Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 690 - 699

DOI: https://doi.org/10.17576/mjas-2017-2103-18

 

 

 

MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUND FROM PINEAPPLE SKINS: THE OPTIMUM OPERATING CONDITION AND COMPARISON WITH SOXHLET EXTRACTION

 

(Pengekstrakan Sebatian Fenolik daripada Kulit Nenas oleh Bantuan Gelombang Mikro: Pengoptimuman Keadaan Pengendalian dan Perbandingan Bersama Pengekstrakan Soxhlet)

 

Nor Halaliza Alias1* and Zulkifly Abbas2

 

1Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Physics, Faculty of Science,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: norhalaliza@salam.uitm.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

A new method of extraction by using a microwave has been widely used in the extracting of bioactive compound from plants. In this research, the pineapple (Ananas comosus L., Merr) wastes (namely skin) has been chosen as it contains a very high phenolic compound and provide a good source of antioxidant to human’s health. The three parameters varied were the microwave power, the types of solvent extraction and the extraction temperature. Each of the samples was evaluated for the Total Phenolic Compound (TPC) and Antioxidant Activity (AA). The aims of this study are to obtain the optimum operating condition of Microwave-Assisted Extraction (MAE) in the extraction of phenolic compound from pineapple skins and to compare the extraction yield between MAE and Soxhlet Extraction (SE) method. From the results, it was found that the optimum condition was at 750 W microwave power, 60 °C operating temperature and with the solvent ratio of ethanol: water (50-50) by volume. At this optimum condition, the TPC observed was 207.72 mg GAE/g dw, whereas for the EC50, DPPH value obtained was the lowest, 13.2 mg/mL. MAE has proven that this method is comparable to SE, with the TPC obtained was 28.78 mg GAE/g dw and EC50 of 2.78 mg/L, respectively.

 

Keywords:    pineapple skin, microwave-assisted extraction, microwave power, total phenolic compound, antioxidant activity

 

Abstrak

Satu kaedah baru pengekstrakan dengan menggunakan gelombang mikro telah digunakan secara meluas di dalam pengekstrakan sebatian bioaktif daripada tumbuhan. Di dalam kajian ini, sisa (kulit) nenas (Ananas comosus L., Merr) telah dipilih kerana ia mengandungi sebatian fenolik yang tinggi dan menyediakan sumber antioksidan yang baik kepada kesihatan manusia. Tiga parameter boleh ubah iaitu kuasa gelombang mikro, jenis pelarut pengekstrakan dan suhu pengekstrakan. Setiap sampel telah dinilai untuk jumlah sebatian fenolik (TPC) dan aktiviti antioksidan (AA). Tujuan kajian ini adalah untuk mendapatkan keadaan pengendalian optimum oleh bantuan gelombang mikro (MAE) di dalam pengekstrakan sebatian fenolik daripada sisa nenas dan membandingkan hasil pengekstrakan di antara MAE dan pengekstrakan Soxhlet (SE). Daripada keputusan, telah didapati bahawa keadaan optimum adalah pada kuasa gelombang mikro 750 W, pengendalian suhu 60 °C dan nisbah pelarut etanol: air (50-50) mengikut isipadu. Pada keadaan optimum ini, TPC yang dicerap adalah 207.72 mg GAE/g dw, manakala untuk EC50, DPPH telah didapati pada nilai yang paling rendah, iaitu 13.2 mg/mL. MAE telah membuktikan bahawa kaedah ini setanding dengan SE, dengan TPC diperoleh adalah masing – masing 28.78 mg GAE/g dw dengan EC50 2.78 mg/L.

 

Kata kunci:  kulit nenas, gelombang mikro terbantu, kuasa gelombang mikro, jumlah sebatian berfenol, aktiviti antioksidan

 

References

1.       Cook, N. C. and Sammon S. (1996). Flavanoids chemistry, metabolism, cardioprotective effects and dietary sources. Nutritional Biochemistry, 7: 66 – 76.

2.       Karakaya, S., El, S. and Ta, A. A. (2001). Antioxidant activity of some foods containing phenolic compounds. International Journal of Food Sciences and Nutrition, 52: 501 – 508.

3.       Shahidi, F. and Naczk, M. (2004). Phenolics in food and nutraceuticals. CRC Press, Boca Raton, FL.

4.       Tachakittirungrod, S., Okonogi, S. and Chowwanapoonpohn, S. (2007). Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leave extract. Journal of Food Chemistry, 103(2): 381 – 388.

5.       Frankel, E. N. (2007). Antioxidant in food and biology: Facts and fiction. USA: The Oily.

6.       Amzad Hossain, M. and Mizanur Rahman, S. M. (2011). Total phenolics, flavanoids and antioxidant activity of tropical fruit pineapple. Journal of Food Research International, 44: 672 – 676.

7.       Renaud, S. C., Gueguen, R., Schenker, J. and d’Houtaud, A. (1998). Alcohol and mortality in middle-aged men from France. Epidemiology, 9: 184 – 188.

8.       Neha, B., Harinder Singh, O., Dewinder Singh, U. and Ramabhau Patil, P. (2011). Total phenolic compound and antioxidant capacity of extracts obtained from six important fruit residues. Journal of Food Research International, 44: 391 – 396.

9.       Makris, D. P., Boskou, G. and Androkopoulus, N. K. (2007). Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresource Technology, 98: 2963 – 2967.

10.    Maisuthisakul, P. and Gordon, M. H. (2009). Antioxidant and tyrosinase inhibitory activity of mango seed kernel by-product. Journal of Food Chemistry, 117: 332 – 341.

11.    Hajar, I. I., Wei Chan, K., Abdalbasit, A. M. and Maznah, I. (2010). Phenolic compound and antioxidant activity of cantaloupe (Cucumis melo) methanolic extract. Journal of Food Chemistry, 119: 643 – 647.

12.    Sutivisedsak, N., Cheng, H. N., Willett, J. L., Lesch, W. C., Tangsrud, R. R. and Atanu, B. (2010). Microwave-assisted extraction of phenolics from bean (Phaseolus vulgaris, L.). Journal of Food Research International, 43: 516 – 519.

13.    Tameshia, S. B., Parameswarakumar, M., Kequan, Z. and Sean, O. (2010). Microwave-assisted extraction of phenolic antioxidant compounds from peanut skin. Journal of Food Chemistry, 120: 1185 – 1192.

14.    Okonogi, S., Duangrat, C., Anuchpreeda, S., Tachakittirungrod, S. and Chowwanapoonpohn, S. (2007). Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Journal of Food Chemistry, 103: 839 – 846.

15.    Khizar, H., Sarfraz, H., Shabbar, A., Umar, F., Baomiao, D., Shuqin, X., Chengsheng, J., Xiaoming, Z. and Wenshui, X. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Journal of Separation and Purification Technology, 70: 63 – 70.

16.    Atul, U., Jeewan, P. L. and Shinkichi, T. (2010). Utilization of pineapple waste: A review. Review in Journal of Food Science, 6: 10 – 18.

17.    Alias, N. H. and Zulkifly, A. (2013). Preliminary investigation on the total phenolic compound and antioxidant activity of pineapple wastes via microwave-assisted extraction at fixed microwave power. IEEE Symposium on Business, Engineering and Industrial Application: pp. 423 – 427.

18.    Kongsuwan, A., Suthiluk, P., Theppa korn, T., Srilaong, V. and Setha, S. (2009). Bioactive compounds and antioxidant capacities of Phulae and Nanglae pineapple. Asian Journal of Food and Agro-Industry, Special Issue: 44 – 50.

19.    Adhikarimayum, H., Kshetrimayum, G. and Maibam, D. (2010). Evaluation of antioxidant properties of phenolics extracted from Ananas comosus l. notulae scientia niologicae. Academic Press: pp. 68 –71.

20.    Anynda, Y. and Lee-Fong, S. (2014). A comparative study of the antioxidant properties of three pineapples (Ananas comosus L.) varieties. Journal of Food Studies, 3 (1): 40 – 56.

21.    de oliveira, A. C., Valentim, I. B., Silva, C. A., Bechara, E. J. H., de Barros, M. P., Mano, C. M. and Goulart, M. O. F. (2009). Total phenolic compound and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Journal of Food Chemistry, 115: 469 – 475.

22.    Alothman, M., Bhat, R. and Karim, A. A. (2009). Antioxidant capacity and phenolic compound of selected tropical fruits from malaysia, extracted with different solvent. Journal of Food Chemistry, 115: 785 – 788.

23.    Glanzer, K., Sanglo, A. and Valko, K. (1986). Microwave extraction – a novel sample preparation method for chromatography. Journal of Chromatography, 371: 299 – 306.

24.    Belwal, T., Bhatt, I. D., Rawal, R. S. and Pande, V. (2017). Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. Ex DC leaves. Journal of Industrial Crops and Products, 95: 393 – 403.

25.    Simic, V. M., Rajkovic, K. M., Stojicevic, S. S., Velickovic, D. T., Nikolic, N. C., Lazic, M. L. and Karabegovic, I. T. (2016). Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Journal of Separation and Purification Technology, 160: 89 – 97.

26.    Bouras, M., Chadni, M., Barba, F. J., Grimi, N., Bals, O. and Vorobiev, E. (2015). Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Journal of Industrial Crops and Products, 77: 590 – 601.

27.    Baiano, A., Bevilacqua, L., Terracone, C., Conto, F. and Del Nobile, M. A. (2014). Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering, 120: 135 – 145.

28.    Pan, Y., Wang, K., Huang, S., Wang, H., Mu, X., He, C., Ji, X., Zhang, J. and Huang, F. (2008). Antioxidant activity of microwave-assisted extract of Longan (Dimocarpus Longan Lour.). Journal of Food Chemistry, 106: 1264 – 1270.

29.    Sutivisedsak, N., Cheng, H.N., Willett, J. L., Lesch, W. C., Tangsrud, R. R. and Biswas, A. (2010). Microwave-assisted extraction of phenolics from bean (Phaseolus vulgaris L.). Journal of Food Research International, 43: 516 – 519.

30.    Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., Jia, C., Zhang, X. and Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Journal of Separation and Purification Technology, 70: 63 – 70.

31.    Ballard, T. S., Mallikarjunan, P., Zhou, K. and O’Keefe, S. (2010). Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Journal of Food Chemistry, 120: 1185 – 1192.

32.    Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152 – 178.

33.    Brand, W. W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 20: 25 – 30.

34.    Sanchez-Moreno, C., Larrauri, J. A. and Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of Food and Science and Agriculture, 76: 270 – 276.

35.    Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 26: 1199 –1200.

36.    Luque de Castro, M. D. and Luque Garcia, J. L. (2002). Acceleration and automation of solid sample treatment. Amsterdam: Elsevier: pp. 218.

37.    Mandal, V., Mohan, Y. and Hemalatha, S. (2007). Microwave-assisted extraction - an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1(1): 7 – 18.

38.    Maisuthisakul, P., Suttajit, M. and Pongsawatmanit, R. (2007). Assessment of phenolic compound and free radical-scavenging capacity for some Thai indigeneous plants. Journal of Food Chemistry, 72(2): 145 – 171.

39.    Mandal, V. and Mandal, S. C. (2010). Design and performance evaluation of a microwave-based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: Oleanolic acid. Biochemical Engineering Journal, 50(1-2): 63 – 70.

40.    Xiao, W., Han, L. and Shi, B. (2008). Microwave-assisted extraction of flavanoids from Radix astragal. Separation and Purification Technology, 62: 614 – 618.

41.    Chemat, S., Ait-Amar, H., Lagha, A. and Esveld, D. C. (2005). Microwave-assisted extraction kinetics of terpenes from Caraway seeds. Chemical Engineering and Processing: Process Intensification, 44 (12): 1320 – 1326.

42.    Kwon, J. H., Belanger, J. M. R., Pare, J. R. J. and Yaylayan, V. A. (2003). Application of the Microwave-Assisted Process (MAPTM) to the fast extraction of ginseng Saponins. Food Research Institute, 36: 491 – 498.

43.    Chung-Hung, C., Rozita, Y., Gek-Cheng, N. and Fabian Wai-Lee, K. (2011). Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A, 1218: 6213 – 6225.

44.    Tsubaki, S., Sakamoto, M. and Azuma, J. (2010). Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Journal of Food Chemistry, 123(4): 1255 – 1258.

45.    Antolovich, M., Prenzler, P., Robards, K. and Ryan, D. (2000). Sample preparation in the determination of phenolic compounds in fruit. Journal of Analyst, 125: 989 – 1009.

46.    Luthria, D. L. and Mukhopadhyay, S. (2005). Influence of sample preparation on assay of phenolic acids from eggplant. Journal of Agriculture and Food Chemistry, 54: 41 – 47.

47.    Casazza, A. A., Aliakbarian, B., Mantegna, S., Cravotto, G. and Perego, P. (2010). Extraction of phenolics from Vitis Vinifera wastes using non-conventional techniques. Journal of Food Engineering, 100: 50 – 55.

48.    Zhou, H. Y. and Liu, C. Z. (2006). Microwave-assisted extraction of solanesol from tobacco leaves. Journal of Chromatography A, 1129: 135 – 139.

49.    Escribano-Bailon, M. T. and Santos-Buelga, C. (2003). Polyphenol extraction from foods. In C. Santos-Buelga and G. Williamson (Eds.). Methods in polyphenol analysis, UK. The Royal Society of Chemistry: pp. 1 – 16.

50.    Alfaro, M. J., Belanger, J. M. R., Padilla, F. C. and Pare, J. R. J. (2004). Influence of solvent, matrix dielectric properties and applied power on the liquid-phase microwave-assisted processes (MAPTM) extraction of ginger (Zingiber officinale). Journal of Food Research International, 36(5): 499 – 504.

51.    Hatam, S. F., Suryanto, E. and Abidjulu, J. (2013). Aktivitas antioksidan dari ekstrak kulit nenas (Ananas comosus (L) Merr). Pharmacon, Jurnal Ilmiah Farmasi, 2(1): 2310 – 2315.

52.    Zhou, T., Xiao, X. H., Wang, J. Y., Chen, J. L., Zhu, X. F., He, Z. F. and Li, G. K. (2012). Evaluation of microwave-assisted extraction for aristolochic acid from aristolochiae fructus by chromatographic analysis coupled with nephrotoxicity studies. Journal of Biomedical Chromatography, 26: 166 – 171.

53.    Diange, R. G., Foster, G. D. and Khan, S. U. (2002). Comparison of soxhlet and microwave-assisted extraction for the determination of fenitrothion residues in beans. Journal of Agriculture and Food Chemistry, 50: 3204 – 3207.

54.    Pan, X., Niu, G. and Liu, H. (2003). Microwave-assisted extraction of tea-polyphenols and tea caffeine from green tea leaves. Journal of Chemical Engineering Process, 42: 129 – 133.

55.    Singh, S. B., Foster, G. D. and Khan, S. U. (2004). Microwave-assisted extraction for the simultaneous determination of thiamethoxam, imidacloprid and carbendazim residues in fresh and cooked vegetable samples. Journal of Agriculture and Food Chemistry, 52: 105 – 109.

56.    Setiawan, C., Purnomo, H. and Kusnadi, J. (2013). Application of microwave-assisted extraction on teak (Tectona grandis) leaves antioxidant extraction. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(3): 1012 – 1018.

 




Previous                    Content                    Next