Malaysian Journal of Analytical
Sciences Vol 21 No 3 (2017): 690 - 699
DOI:
https://doi.org/10.17576/mjas-2017-2103-18
MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUND
FROM PINEAPPLE SKINS: THE OPTIMUM OPERATING CONDITION AND COMPARISON WITH
SOXHLET EXTRACTION
(Pengekstrakan Sebatian Fenolik daripada Kulit Nenas oleh Bantuan Gelombang
Mikro: Pengoptimuman Keadaan Pengendalian dan Perbandingan Bersama
Pengekstrakan Soxhlet)
Nor Halaliza Alias1* and Zulkifly
Abbas2
1Faculty of Chemical Engineering,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Department of Physics, Faculty of Science,
Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding author: norhalaliza@salam.uitm.edu.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
A new method of extraction by using a
microwave has been widely used in the extracting of bioactive compound from
plants. In this research, the
pineapple (Ananas comosus L., Merr)
wastes (namely skin) has been chosen as it contains a very high phenolic compound
and provide a good source of antioxidant to human’s health. The three
parameters varied were the microwave power, the types of solvent extraction and
the extraction temperature. Each of the samples was evaluated for the Total
Phenolic Compound (TPC) and Antioxidant Activity (AA). The aims of this study
are to obtain the optimum operating condition of Microwave-Assisted Extraction
(MAE) in the extraction of phenolic compound from pineapple skins and to
compare the extraction yield between MAE and Soxhlet Extraction (SE) method.
From the results, it was found that the optimum condition was at 750 W
microwave power, 60 °C operating temperature and with the solvent ratio of ethanol:
water (50-50) by volume. At this
optimum condition, the TPC observed was 207.72 mg GAE/g dw, whereas for the EC50,
DPPH value obtained was the lowest, 13.2 mg/mL. MAE has proven that this method
is comparable to SE, with the TPC obtained was 28.78 mg GAE/g dw and EC50
of 2.78 mg/L, respectively.
Keywords: pineapple skin, microwave-assisted
extraction, microwave power, total phenolic compound, antioxidant activity
Abstrak
Satu kaedah baru
pengekstrakan dengan menggunakan gelombang mikro telah digunakan secara meluas
di dalam pengekstrakan sebatian bioaktif daripada tumbuhan. Di dalam kajian
ini, sisa (kulit) nenas (Ananas comosus
L., Merr) telah dipilih kerana ia mengandungi sebatian fenolik yang tinggi
dan menyediakan sumber antioksidan yang baik kepada kesihatan manusia. Tiga
parameter boleh ubah iaitu kuasa gelombang mikro, jenis pelarut pengekstrakan
dan suhu pengekstrakan. Setiap sampel telah dinilai untuk jumlah sebatian
fenolik (TPC) dan aktiviti antioksidan (AA). Tujuan kajian ini adalah untuk
mendapatkan keadaan pengendalian optimum oleh bantuan gelombang mikro (MAE) di
dalam pengekstrakan sebatian fenolik daripada sisa nenas dan membandingkan
hasil pengekstrakan di antara MAE dan pengekstrakan Soxhlet (SE). Daripada
keputusan, telah didapati bahawa keadaan optimum adalah pada kuasa gelombang
mikro 750 W, pengendalian suhu 60 °C dan nisbah pelarut etanol: air (50-50)
mengikut isipadu. Pada keadaan optimum ini, TPC yang dicerap adalah 207.72 mg
GAE/g dw, manakala untuk EC50, DPPH telah didapati pada nilai yang
paling rendah, iaitu 13.2 mg/mL. MAE telah membuktikan bahawa kaedah ini
setanding dengan SE, dengan TPC diperoleh adalah masing – masing 28.78 mg GAE/g
dw dengan EC50 2.78 mg/L.
Kata kunci: kulit nenas, gelombang mikro
terbantu, kuasa gelombang mikro, jumlah sebatian berfenol, aktiviti antioksidan
References
1. Cook, N. C. and
Sammon S. (1996). Flavanoids chemistry, metabolism, cardioprotective effects
and dietary sources. Nutritional
Biochemistry, 7: 66 – 76.
2. Karakaya, S., El, S. and Ta, A. A. (2001). Antioxidant
activity of some foods containing phenolic compounds. International Journal of Food Sciences and Nutrition, 52: 501 –
508.
3. Shahidi, F. and
Naczk, M. (2004). Phenolics in food and nutraceuticals. CRC Press, Boca Raton, FL.
4. Tachakittirungrod,
S., Okonogi, S. and Chowwanapoonpohn, S. (2007). Study on antioxidant activity
of certain plants in Thailand: mechanism of antioxidant action of guava leave
extract. Journal of Food Chemistry,
103(2): 381 – 388.
5. Frankel, E. N.
(2007). Antioxidant in food and biology: Facts and fiction. USA: The Oily.
6. Amzad Hossain,
M. and Mizanur Rahman, S. M. (2011). Total phenolics, flavanoids and
antioxidant activity of tropical fruit pineapple. Journal of Food Research International, 44: 672 – 676.
7. Renaud, S. C.,
Gueguen, R., Schenker, J. and d’Houtaud, A. (1998). Alcohol and mortality in
middle-aged men from France. Epidemiology,
9: 184 – 188.
8. Neha, B.,
Harinder Singh, O., Dewinder Singh, U. and Ramabhau Patil, P. (2011). Total
phenolic compound and antioxidant capacity of extracts obtained from six
important fruit residues. Journal of Food
Research International, 44: 391 – 396.
9. Makris, D. P.,
Boskou, G. and Androkopoulus, N. K. (2007). Recovery of antioxidant phenolics
from white vinification solid by-products employing water/ethanol mixtures. Bioresource Technology, 98: 2963 – 2967.
10. Maisuthisakul,
P. and Gordon, M. H. (2009). Antioxidant and tyrosinase inhibitory activity of
mango seed kernel by-product. Journal of
Food Chemistry, 117: 332 – 341.
11. Hajar, I. I.,
Wei Chan, K., Abdalbasit, A. M. and Maznah, I. (2010). Phenolic compound and
antioxidant activity of cantaloupe (Cucumis
melo) methanolic extract. Journal of
Food Chemistry, 119: 643 – 647.
12. Sutivisedsak,
N., Cheng, H. N., Willett, J. L., Lesch, W. C., Tangsrud, R. R. and Atanu, B.
(2010). Microwave-assisted extraction of phenolics from bean (Phaseolus vulgaris, L.). Journal of Food Research International,
43: 516 – 519.
13. Tameshia, S. B.,
Parameswarakumar, M., Kequan, Z. and Sean, O. (2010). Microwave-assisted
extraction of phenolic antioxidant compounds from peanut skin. Journal of Food Chemistry, 120: 1185 –
1192.
14. Okonogi, S.,
Duangrat, C., Anuchpreeda, S., Tachakittirungrod, S. and Chowwanapoonpohn, S.
(2007). Comparison of antioxidant capacities and cytotoxicities of certain
fruit peels. Journal of Food Chemistry,
103: 839 – 846.
15. Khizar, H.,
Sarfraz, H., Shabbar, A., Umar, F., Baomiao, D., Shuqin, X., Chengsheng, J.,
Xiaoming, Z. and Wenshui, X. (2009). Optimized microwave-assisted extraction of
phenolic acids from citrus mandarin peels and evaluation of antioxidant
activity in vitro. Journal of Separation
and Purification Technology, 70: 63 – 70.
16. Atul, U.,
Jeewan, P. L. and Shinkichi, T. (2010). Utilization of pineapple waste: A
review. Review in Journal of Food
Science, 6: 10 – 18.
17. Alias, N. H. and
Zulkifly, A. (2013). Preliminary investigation on the total phenolic compound
and antioxidant activity of pineapple wastes via microwave-assisted extraction
at fixed microwave power. IEEE Symposium
on Business, Engineering and Industrial Application: pp. 423 – 427.
18. Kongsuwan, A.,
Suthiluk, P., Theppa korn, T., Srilaong, V. and Setha, S. (2009). Bioactive
compounds and antioxidant capacities of Phulae
and Nanglae pineapple. Asian Journal of Food and Agro-Industry,
Special Issue: 44 – 50.
19. Adhikarimayum,
H., Kshetrimayum, G. and Maibam, D. (2010). Evaluation of antioxidant
properties of phenolics extracted from Ananas comosus l. notulae scientia niologicae. Academic Press: pp. 68 –71.
20. Anynda, Y. and
Lee-Fong, S. (2014). A comparative study of the antioxidant properties of three
pineapples (Ananas comosus L.) varieties. Journal of Food Studies, 3 (1): 40 – 56.
21. de oliveira, A. C., Valentim, I. B., Silva, C. A.,
Bechara, E. J. H., de Barros, M. P., Mano, C. M. and Goulart, M. O. F. (2009). Total phenolic
compound and free radical scavenging activities of methanolic extract powders
of tropical fruit residues. Journal of
Food Chemistry, 115: 469 – 475.
22. Alothman, M.,
Bhat, R. and Karim, A. A. (2009). Antioxidant capacity and phenolic compound of
selected tropical fruits from malaysia, extracted with different solvent. Journal of Food Chemistry, 115: 785 –
788.
23. Glanzer, K.,
Sanglo, A. and Valko, K. (1986). Microwave extraction – a novel sample
preparation method for chromatography. Journal
of Chromatography, 371: 299 – 306.
24. Belwal, T.,
Bhatt, I. D., Rawal, R. S. and Pande, V. (2017). Microwave-assisted extraction
(MAE) conditions using polynomial design for improving antioxidant
phytochemicals in Berberis asiatica
Roxb. Ex DC leaves. Journal of Industrial
Crops and Products, 95: 393 – 403.
25. Simic, V. M.,
Rajkovic, K. M., Stojicevic, S. S., Velickovic, D. T., Nikolic, N. C., Lazic,
M. L. and Karabegovic, I. T. (2016). Optimization of microwave-assisted
extraction of total polyphenolic compounds from chokeberries by response
surface methodology and artificial neural network. Journal of Separation and Purification Technology, 160: 89 – 97.
26. Bouras, M.,
Chadni, M., Barba, F. J., Grimi, N., Bals, O. and Vorobiev, E. (2015).
Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Journal of Industrial Crops and Products, 77: 590 – 601.
27. Baiano, A., Bevilacqua, L., Terracone, C., Conto, F. and
Del Nobile, M. A. (2014). Single and interactive effects of process variables
on microwave-assisted and conventional extractions of antioxidants from
vegetable solid wastes. Journal of Food Engineering, 120: 135 – 145.
28. Pan, Y., Wang,
K., Huang, S., Wang, H., Mu, X., He, C., Ji, X., Zhang, J. and Huang, F.
(2008). Antioxidant activity of microwave-assisted extract of Longan (Dimocarpus Longan Lour.). Journal of Food Chemistry, 106: 1264 –
1270.
29. Sutivisedsak, N.,
Cheng, H.N., Willett, J. L., Lesch, W. C., Tangsrud, R. R. and Biswas, A.
(2010). Microwave-assisted extraction of phenolics from bean (Phaseolus vulgaris L.). Journal of Food Research International,
43: 516 – 519.
30. Hayat, K.,
Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., Jia, C., Zhang, X. and
Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from
citrus mandarin peels and evaluation of antioxidant activity in vitro. Journal of Separation and Purification
Technology, 70: 63 – 70.
31. Ballard, T. S.,
Mallikarjunan, P., Zhou, K. and O’Keefe, S. (2010). Microwave-assisted
extraction of phenolic antioxidant compounds from peanut skins. Journal of Food Chemistry, 120: 1185 –
1192.
32. Singleton, V.
L., Orthofer, R. and Lamuela-Raventos, R. M. (1999). Analysis of total phenols
and other oxidation substrates and antioxidants by means of Folin-Ciocalteu
reagent. Methods in Enzymology, 299:
152 – 178.
33. Brand, W. W.,
Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate
antioxidant activity. Lebensmittel-Wissenschaft
und Technologie, 20: 25 – 30.
34. Sanchez-Moreno,
C., Larrauri, J. A. and Saura-Calixto, F. (1998). A procedure to measure the
antiradical efficiency of polyphenols. Journal
of Food and Science and Agriculture, 76: 270 – 276.
35. Blois, M. S.
(1958). Antioxidant determinations by the use of a stable free radical. Nature, 26: 1199 –1200.
36. Luque de Castro, M. D. and Luque Garcia, J. L. (2002). Acceleration and
automation of solid sample treatment. Amsterdam:
Elsevier: pp. 218.
37. Mandal, V.,
Mohan, Y. and Hemalatha, S. (2007). Microwave-assisted extraction - an
innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1(1): 7 – 18.
38. Maisuthisakul,
P., Suttajit, M. and Pongsawatmanit, R. (2007). Assessment of phenolic compound
and free radical-scavenging capacity for some Thai indigeneous plants. Journal of Food Chemistry, 72(2): 145 –
171.
39. Mandal, V. and
Mandal, S. C. (2010). Design and performance evaluation of a microwave-based
low carbon yielding extraction technique for naturally occurring bioactive
triterpenoid: Oleanolic acid. Biochemical
Engineering Journal, 50(1-2): 63 – 70.
40. Xiao, W., Han,
L. and Shi, B. (2008). Microwave-assisted extraction of flavanoids from Radix astragal. Separation and Purification Technology, 62: 614 – 618.
41. Chemat, S.,
Ait-Amar, H., Lagha, A. and Esveld, D. C. (2005). Microwave-assisted extraction
kinetics of terpenes from Caraway seeds. Chemical
Engineering and Processing: Process Intensification, 44 (12): 1320 – 1326.
42. Kwon, J. H.,
Belanger, J. M. R., Pare, J. R. J. and Yaylayan, V. A. (2003). Application of
the Microwave-Assisted Process (MAPTM) to the fast extraction of
ginseng Saponins. Food Research Institute, 36: 491 – 498.
43. Chung-Hung, C.,
Rozita, Y., Gek-Cheng, N. and Fabian Wai-Lee, K. (2011). Microwave-assisted
extractions of active ingredients from plants. Journal of Chromatography A, 1218: 6213 – 6225.
44. Tsubaki, S.,
Sakamoto, M. and Azuma, J. (2010). Microwave-assisted extraction of phenolic
compounds from tea residues under autohydrolytic conditions. Journal of Food Chemistry, 123(4): 1255
– 1258.
45. Antolovich, M.,
Prenzler, P., Robards, K. and Ryan, D. (2000). Sample preparation in the
determination of phenolic compounds in fruit. Journal of Analyst, 125: 989 – 1009.
46. Luthria, D. L.
and Mukhopadhyay, S. (2005). Influence of sample preparation on assay of
phenolic acids from eggplant. Journal of
Agriculture and Food Chemistry, 54: 41 – 47.
47. Casazza, A. A., Aliakbarian, B., Mantegna, S., Cravotto,
G. and Perego, P. (2010). Extraction of phenolics from Vitis Vinifera wastes using non-conventional techniques. Journal of Food Engineering, 100: 50 –
55.
48. Zhou, H. Y. and
Liu, C. Z. (2006). Microwave-assisted extraction of solanesol from tobacco
leaves. Journal of Chromatography A,
1129: 135 – 139.
49. Escribano-Bailon, M. T. and Santos-Buelga, C. (2003). Polyphenol
extraction from foods. In C. Santos-Buelga and G. Williamson (Eds.). Methods in
polyphenol analysis, UK. The Royal
Society of Chemistry: pp. 1 – 16.
50. Alfaro, M. J.,
Belanger, J. M. R., Padilla, F. C. and Pare, J. R. J. (2004). Influence of
solvent, matrix dielectric properties and applied power on the liquid-phase
microwave-assisted processes (MAPTM) extraction of ginger (Zingiber officinale). Journal of Food Research International,
36(5): 499 – 504.
51. Hatam, S. F.,
Suryanto, E. and Abidjulu, J. (2013). Aktivitas
antioksidan dari ekstrak kulit nenas (Ananas
comosus (L) Merr). Pharmacon,
Jurnal Ilmiah Farmasi,
2(1): 2310 – 2315.
52. Zhou, T., Xiao,
X. H., Wang, J. Y., Chen, J. L., Zhu, X. F., He, Z. F. and Li, G. K. (2012).
Evaluation of microwave-assisted extraction for aristolochic acid from aristolochiae
fructus by chromatographic analysis coupled with nephrotoxicity studies. Journal of Biomedical Chromatography,
26: 166 – 171.
53. Diange, R. G.,
Foster, G. D. and Khan, S. U. (2002). Comparison of soxhlet and
microwave-assisted extraction for the determination of fenitrothion residues in
beans. Journal of Agriculture and Food
Chemistry, 50: 3204 – 3207.
54. Pan, X., Niu, G.
and Liu, H. (2003). Microwave-assisted extraction of tea-polyphenols and tea
caffeine from green tea leaves. Journal
of Chemical Engineering Process, 42: 129 – 133.
55. Singh, S. B.,
Foster, G. D. and Khan, S. U. (2004). Microwave-assisted extraction for the
simultaneous determination of thiamethoxam, imidacloprid and carbendazim
residues in fresh and cooked vegetable samples. Journal of Agriculture and Food Chemistry, 52: 105 – 109.
56. Setiawan, C.,
Purnomo, H. and Kusnadi, J. (2013). Application of microwave-assisted
extraction on teak (Tectona grandis)
leaves antioxidant extraction. Research
Journal of Pharmaceutical, Biological and Chemical Sciences, 4(3): 1012 –
1018.