Malaysian Journal
of Analytical Sciences Vol 21 No 3 (2017): 700 - 708
DOI:
https://doi.org/10.17576/mjas-2017-2103-19
PRELIMINARY
STUDY ON PD-BASED BINARY CATALYSTS SUPPORTED WITH CARBON NANOFIBER FOR THE ELECTROOXIDATION
OF GLYCEROL
(Kajian Awal ke atas Mangkin
Berasaskan Pd Disokong dengan Gentian Nano Karbon untuk Pengoksidaan Elektro
Gliserol)
Norilhamiah Yahya1*, Siti Kartom
Kamaruddin2,3, Nabila Abdul Karim2, Mohd Shahbudin Masdar3,
Kee Shyuan Loh2
1Malaysian
Institute of Chemical and Bioengineering Technology,
Universiti Kuala Lumpur, 78000 Alor
Gajah, Melaka, Malaysia
2Fuel
Cell Institute
3Department
of Chemical and Process Engineering
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: norilhamiah@unikl.edu.my
Received:
28 November 2016; Accepted: 5 February 2017
Abstract
In this study, Aurum (Au) was used as the
second metal in palladium catalyst (Pd) and carbon nanofiber (CNF) as catalyst
support for glycerol oxidation. Second metal and catalyst support will help to
improve catalytic activity and decrease adsorbed oxidation intermediates
species. Carbon nanofiber supported PdAu nanoparticles was synthesized by using
trisodium citrate as stabilizing agent and sodium borohydride as reducing
agent. Physicochemical characterizations of the catalyst were performed by
X-ray Diffraction (XRD), Transmission Electron Microscope
(TEM), Field Emission Scanning Electron
Microscope (FESEM) and Brunauer-Emmett-Teller (BET) to study the nature
of the catalysts. The electrochemical activity for oxidation of glycerol on
PdAu/CNF was evaluated in half cell under alkaline media by cyclic voltammetry
potentiostat. The densities and mass activity obtained from half-cell analysis
were 73.81 mA cm-2 @ 492.04
mA mg-1, 63.82 mA cm-2 @ 425.44 mA mg-1 and 55.73 mA cm-2 @ 371.54
mA mg-1 for PdAu/CNF, Pd/CNF and Au/CNF, respectively
in 1 M KOH + 0.5 M glycerol electrolyte. The electrochemical study,
exhibited the superior performance of bimetallic PdAu/CNF catalyst as compared
to monometallic Pd/CNF. This indicate that the electronic coupling between Pd
and Au can promote the electrocatalytic activity for glycerol oxidation.
Keywords: PdAu, carbon
nanofiber, glycerol oxidation, alkaline media
Abstrak
Dalam kajian ini, Au telah digunakan sebagai logam kedua dalam pemangkin paladium dan gentian nano karbon sebagai sokongan pemangkin kepada pengoksidaan gliserol. Logam kedua dan sokongan pemangkin akan membantu meningkatkan aktiviti pemangkin dan mengurangkan perjerapan spesis pertengahan pengoksidaan. PdAu dengan disokong oleh gentian nano karbon telah disintesis dengan menggunakan trisodium sitrat sebagai ejen penstabil dan natrium borohidrat sebagai agen penurunan. Pencirian fizikal-kimia pemangkin telah dijalankan oleh pembelauan sinar-X (XRD), Mikroskop Elektron Penghantaran (TEM), Mikroskop Imbasan Elektron (FESEM) dan Brunauer-Emmett-Teller (BET) untuk mengkaji sifat pemangkin. Aktiviti elektrokimia untuk pengoksidaan gliserol pada PdAu/CNF dinilai dalam sel separuh di bawah media beralkali dengan menggunakan kitaran voltammetri potentionstat. Ketumpatan arus dan berat aktiviti yang diperolehi daripada analisis sel separuh adalah 73.81 mA cm-2 @ 492.04 mA mg-1, 63.82 mA cm-2 @ 425.44 mA mg-1 dan 55.73 mA cm-2 @ 371.54 mA mg-1 masing-masing untuk PdAu/CNF, Pd/CNF dan Au/CNF, dalam 1 M KOH + 0.5 m gliserol elektrolit. Kajian elektrokimia, mempamerkan prestasi unggul pemangkin PdAu/CNF berbanding dengan Pd/CNF and Au/CNF. Ini menunjukkan bahawa gandingan elektronik antara Pd dan Au boleh menggalakkan aktiviti elektrokatalitik untuk pengoksidaan gliserol.
Kata
kunci: PdAu, gentian nano karbon,
oksidasi gliserol, media beralkali
References
1.
Li, S. S., Hu, Y. Y., Feng, J. J., Lv, Z. Y., Chen, J.
R. and Wang, A. J. (2014). Rapid room-temperature synthesis of Pd nanodendrites
on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol.
International Journal of Hydrogen Energy, 39(8): 3730 - 3738.
2.
Habibi, E. and Razmi, H. (2012). Glycerol electrooxidation on
Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline
media. International Journal of Hydrogen Energy, 37(22): 16800 -16809.
3.
Su, L., Jia, W., Schempf, A. and Lei, Y. (2009).
Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline
medium. Electrochemistry Communications, 11(11): 2199 -
2202.
4.
Kamarudin, M. Z. F., Kamarudin. S. K., Masdar. M. S. and
Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International
Journal of Hydrogen Energy, 38(22): 9438 - 9453.
5.
Bagheri, S., Julkapli, N. M. and Yehye, W. (2015). Catalytic
conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy
Reviews, 41: 113 - 127.
6.
Dector,
A., Cuevas-Muñiz, F. M., Guerra-Balcázar, M., Godínez, L. A., Ledesma-García,
J. and Arriaga, L. G. (2013). Glycerol oxidation in a
microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. International
Journal of Hydrogen Energy, 38(28): 12617 - 12622.
7.
Lee, S., Kim, H. J., Choi, S. M.,
Seo, M. H. and Kim, W. B. (2012). The promotional effect of Ni on bimetallic
PtNi/C catalysts for glycerol electrooxidation. Applied Catalysis A: General,
429-430: 39 - 47.
8.
Fernández, P. S., Martins, M. E., and Camara, G. A. (2012).
New insights about the electro-oxidation of glycerol on platinum nanoparticles
supported on multi-walled carbon nanotubes. Electrochimica Acta, 66: 180 - 187.
9.
Geraldes,
A. N., Da Silva, D. F., e Silva. L. G. D. A., Spinacé, E.V., Neto, A. O., Dos
Santos, M. C. (2015). Binary and ternary palladium based electrocatalysts for
alkaline direct glycerol fuel cell. Journal of Power Sources, 293: 823 -
830.
10.
Rezaei, B., Havakeshian E. and Ensafi A. A. (2014).
Fabrication of a porous Pd film on nanoporous stainless steel using galvanic
replacement as a novel electrocatalyst/electrode design for glycerol oxidation.
Electrochimica Acta, 136: 89 - 96.
11.
Zhang, M., Nie, R., Wang L, Shi, J., Du, W. and Hou, Z.
(2014). Selective oxidation of glycerol over carbon nanofibers supported Pt
catalysts in a base-free aqueous solution. Catalysis Communications, 55: 5 - 9.
12.
Maya-Cornejo,
J., Arjona, N., Guerra-Balcázar, M., Álvarez-Contreras, L., Ledesma-García, J.
and Arriaga, L. G. (2014). Synthesis of Pd-Cu bimetallic
electrocatalyst for ethylene glycol and glycerol oxidations in alkaline media. Procedia
Chemistry, 12: 19 - 26.
13.
Li, S. S., Hu, Y. Y., Feng, J. J., Lv, Z. Y., Chen, J. R. and
Wang, A. J. (2014). Rapid room-temperature synthesis of Pd nanodendrites on
reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol.
International Journal of Hydrogen Energy, 39(8): 3730 - 3738.
14.
Mougenot, M., Caillard, A., Simoes, M., Baranton, S.,
Coutanceau, C., and Brault, P. (2011). PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation
of glycerol. Applied Catalysis B: Environmental, 107(3-4): 372 - 379.
15.
Huang, Z., Zhou, H., Li, C., Zeng, F., Fu, C. and Kuang,
Y.(2012). Preparation of well-dispersed PdAu bimetallic nanoparticles on
reduced graphene oxide sheets with excellent electrochemical activity for
ethanol oxidation in alkaline media. Journal of Material Chemistry A, 22(5):1781
- 1785.
16.
Thi, B., Lam, X., Chiku, M., Higuchi, E. and Inoue, H.
(2015). Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts
and their electrocatalytic activity for the glycerol oxidation reaction in
alkaline medium. Journal of Power Sources, 297:149 - 157.
17.
Feng, Y., Liu, Z., Xu, Y., Wang, P., Wang, W. and Kong, D.
(2013). Highly active PdAu alloy catalysts for ethanol electro-oxidation. Journal
of Power Sources, 232: 99 - 105.
18.
Yang, Z., Liu, L., Wang, A., Yuan, J. and Feng, J. (2016).
Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu
alloy nanostructures as effective electrocatalysts of ethanol and ethylene
glycol oxidation. Internatinal Journal of Hydrogen Energy, 42(4): 2034 -
2044. =
19.
Yan, W., Tang, Z., Wang, L., Wang, Q., Yang, H., and Chen,
S.(2016). PdAu alloyed clusters supported by carbon nanosheets as efficient
electrocatalysts for oxygen reduction. International Journal of Hydrogen
Energy, 42(1): 218 - 227.
20.
Qin,
Y-H., Jia, Y-B., Jiang, Y., Niu, D. F., Zhang, X. S., Zhou, X. G., Niu, L. and
Yuan, W. K. (2012). Controllable synthesis of carbon nanofiber supported Pd
catalyst for formic acid electrooxidation. International Journal of Hydrogen Energy, 37(9): 7373 -
7377.
21.
Simões, M., Baranton, S. and Coutanceau, C. (2010).
Electro-oxidation of glycerol at Pd based nano-catalysts for an application in
alkaline fuel cells for chemicals and energy cogeneration. Applied Catalysis
B: Environmental, 93(3-4): 354 - 362.
22.
Chen, Z., Wang, S., Lian, C., Liu, Y., Wang, D. and Chen, C.
(2016). Nano PdAu bimetallic alloy as an effective catalyst for the Buchwald –
Hartwig reaction. Chemistry of Asian
Journal, 11(3): 351 - 355.