Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 700 - 708

DOI: https://doi.org/10.17576/mjas-2017-2103-19

 

 

 

PRELIMINARY STUDY ON PD-BASED BINARY CATALYSTS SUPPORTED WITH CARBON NANOFIBER FOR THE ELECTROOXIDATION OF GLYCEROL

 

(Kajian Awal ke atas Mangkin Berasaskan Pd Disokong dengan Gentian Nano Karbon untuk Pengoksidaan Elektro Gliserol)

 

Norilhamiah Yahya1*, Siti Kartom Kamaruddin2,3, Nabila Abdul Karim2, Mohd Shahbudin Masdar3,

Kee Shyuan Loh2

 

1Malaysian Institute of Chemical and Bioengineering Technology,

Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka, Malaysia

2Fuel Cell Institute

3Department of Chemical and Process Engineering

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: norilhamiah@unikl.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

In this study, Aurum (Au) was used as the second metal in palladium catalyst (Pd) and carbon nanofiber (CNF) as catalyst support for glycerol oxidation. Second metal and catalyst support will help to improve catalytic activity and decrease adsorbed oxidation intermediates species. Carbon nanofiber supported PdAu nanoparticles was synthesized by using trisodium citrate as stabilizing agent and sodium borohydride as reducing agent. Physicochemical characterizations of the catalyst were performed by X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FESEM) and Brunauer-Emmett-Teller (BET) to study the nature of the catalysts. The electrochemical activity for oxidation of glycerol on PdAu/CNF was evaluated in half cell under alkaline media by cyclic voltammetry potentiostat. The densities and mass activity obtained from half-cell analysis were 73.81 mA cm-2 @ 492.04 mA mg-1, 63.82 mA cm-2 @ 425.44 mA mg-1 and 55.73 mA cm-2 @ 371.54 mA mg-1 for PdAu/CNF, Pd/CNF and Au/CNF, respectively in 1 M KOH + 0.5 M glycerol electrolyte. The electrochemical study, exhibited the superior performance of bimetallic PdAu/CNF catalyst as compared to monometallic Pd/CNF. This indicate that the electronic coupling between Pd and Au can promote the electrocatalytic activity for glycerol oxidation.

 

Keywords:  PdAu, carbon nanofiber, glycerol oxidation, alkaline media

 

Abstrak

Dalam kajian ini, Au telah digunakan sebagai logam kedua dalam pemangkin paladium dan gentian nano karbon sebagai sokongan pemangkin kepada pengoksidaan gliserol. Logam kedua dan sokongan pemangkin akan membantu meningkatkan aktiviti pemangkin dan mengurangkan perjerapan spesis pertengahan pengoksidaan. PdAu dengan disokong oleh gentian nano karbon telah disintesis dengan menggunakan trisodium sitrat sebagai ejen penstabil dan natrium borohidrat sebagai agen penurunan. Pencirian fizikal-kimia pemangkin telah dijalankan oleh pembelauan sinar-X (XRD), Mikroskop Elektron Penghantaran (TEM), Mikroskop Imbasan Elektron (FESEM) dan Brunauer-Emmett-Teller (BET) untuk mengkaji sifat pemangkin. Aktiviti elektrokimia untuk pengoksidaan gliserol pada PdAu/CNF dinilai  dalam sel separuh di bawah media beralkali dengan menggunakan kitaran voltammetri potentionstat. Ketumpatan arus dan berat aktiviti yang diperolehi daripada analisis sel separuh adalah 73.81 mA cm-2 @ 492.04 mA mg-1, 63.82 mA cm-2 @ 425.44 mA mg-1 dan 55.73 mA cm-2 @ 371.54 mA mg-1 masing-masing untuk PdAu/CNF, Pd/CNF dan Au/CNF, dalam 1 M KOH + 0.5 m gliserol elektrolit. Kajian elektrokimia, mempamerkan prestasi unggul pemangkin PdAu/CNF berbanding dengan Pd/CNF and Au/CNF. Ini menunjukkan bahawa gandingan elektronik antara Pd dan Au boleh menggalakkan aktiviti elektrokatalitik untuk pengoksidaan gliserol.

 

Kata kunci:  PdAu, gentian nano karbon, oksidasi gliserol, media beralkali

 

References

1.       Li, S. S., Hu, Y. Y., Feng, J. J., Lv, Z. Y., Chen, J. R. and Wang, A. J. (2014). Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. International Journal of Hydrogen Energy, 39(8): 3730 - 3738.

2.       Habibi, E. and Razmi, H. (2012). Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. International Journal of Hydrogen Energy, 37(22): 16800 -16809.

3.       Su, L., Jia, W., Schempf, A. and Lei, Y. (2009). Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium. Electrochemistry Communications, 11(11): 2199 - 2202.

4.       Kamarudin, M. Z. F., Kamarudin. S. K., Masdar. M. S. and Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy, 38(22): 9438 - 9453.

5.       Bagheri, S., Julkapli, N. M. and Yehye, W. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41: 113 - 127.

6.       Dector, A., Cuevas-Muñiz, F. M., Guerra-Balcázar, M., Godínez, L. A., Ledesma-García, J. and Arriaga, L. G. (2013). Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. International Journal of Hydrogen Energy, 38(28): 12617 - 12622.

7.       Lee, S., Kim, H. J., Choi, S. M., Seo, M. H. and Kim, W. B. (2012). The promotional effect of Ni on bimetallic PtNi/C catalysts for glycerol electrooxidation. Applied Catalysis A: General, 429-430: 39 - 47. 

8.       Fernández, P. S., Martins, M. E., and Camara, G. A. (2012). New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochimica Acta, 66: 180 - 187.

9.       Geraldes, A. N., Da Silva, D. F., e Silva. L. G. D. A., Spinacé, E.V., Neto, A. O., Dos Santos, M. C. (2015). Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. Journal of Power Sources, 293: 823 - 830.

10.    Rezaei, B., Havakeshian E. and Ensafi A. A. (2014). Fabrication of a porous Pd film on nanoporous stainless steel using galvanic replacement as a novel electrocatalyst/electrode design for glycerol oxidation. Electrochimica Acta, 136: 89 - 96.

11.    Zhang, M., Nie, R., Wang L, Shi, J., Du, W. and Hou, Z. (2014). Selective oxidation of glycerol over carbon nanofibers supported Pt catalysts in a base-free aqueous solution. Catalysis Communications, 55: 5 - 9.

12.    Maya-Cornejo, J., Arjona, N., Guerra-Balcázar, M., Álvarez-Contreras, L., Ledesma-García, J. and Arriaga, L. G. (2014). Synthesis of Pd-Cu bimetallic electrocatalyst for ethylene glycol and glycerol oxidations in alkaline media. Procedia Chemistry, 12: 19 - 26.

13.    Li, S. S., Hu, Y. Y., Feng, J. J., Lv, Z. Y., Chen, J. R. and Wang, A. J. (2014). Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. International Journal of Hydrogen Energy, 39(8): 3730 - 3738.

14.    Mougenot, M., Caillard, A., Simoes, M., Baranton, S., Coutanceau, C., and Brault, P. (2011). PdAu/C catalysts prepared  by plasma sputtering for the electro-oxidation of glycerol. Applied Catalysis B: Environmental, 107(3-4): 372 - 379.

15.    Huang, Z., Zhou, H., Li, C., Zeng, F., Fu, C. and Kuang, Y.(2012). Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. Journal of Material Chemistry A, 22(5):1781 - 1785.

16.    Thi, B., Lam, X., Chiku, M., Higuchi, E. and Inoue, H. (2015). Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium. Journal of Power Sources, 297:149 - 157.

17.    Feng, Y., Liu, Z., Xu, Y., Wang, P., Wang, W. and Kong, D. (2013). Highly active PdAu alloy catalysts for ethanol electro-oxidation. Journal of Power Sources, 232: 99 - 105.

18.    Yang, Z., Liu, L., Wang, A., Yuan, J. and Feng, J. (2016). Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation. Internatinal Journal of Hydrogen Energy, 42(4): 2034 - 2044. =

19.    Yan, W., Tang, Z., Wang, L., Wang, Q., Yang, H., and Chen, S.(2016). PdAu alloyed clusters supported by carbon nanosheets as efficient electrocatalysts for oxygen reduction. International Journal of Hydrogen Energy, 42(1): 218 - 227.

20.    Qin, Y-H., Jia, Y-B., Jiang, Y., Niu, D. F., Zhang, X. S., Zhou, X. G., Niu, L. and Yuan, W. K. (2012). Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. International  Journal of Hydrogen Energy, 37(9): 7373 - 7377.

21.    Simões, M., Baranton, S. and Coutanceau, C. (2010). Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Applied Catalysis B: Environmental, 93(3-4): 354 - 362.

22.    Chen, Z., Wang, S., Lian, C., Liu, Y., Wang, D. and Chen, C. (2016). Nano PdAu bimetallic alloy as an effective catalyst for the Buchwald – Hartwig reaction. Chemistry of Asian Journal, 11(3): 351 - 355.

 




Previous                    Content                    Next