Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 709 - 718
DOI:
https://doi.org/10.17576/mjas-2017-2103-20
THE EFFECTS OF DIFFERENT
RATIOS OF SONOCHEMICALLY ASSISTED NICKEL OXIDE AND ZIRCONIUM OXIDE CATALYSTS IN
SYNGAS PRODUCTION
(Kesan-Kesan
Pelbagai Nisbah Pemangkin Nikel Oksida dan Zirkonium Oksida dengan Rawatan
Sonokimia Terhadap Penghasilan Singas)
Wan Nurdiyana
Wan Amarina1,2, Wong Yee Ching1,2*, Taufiq Yap Yun Hin3,4
1Faculty of Agro Based Industry
2Faculty of Bioengineering and Technology
Universiti Malaysia Kelantan, Locked Bag No.
100, 17600 Jeli, Kelantan, Malaysia
3Centre of Excellence for Catalysis Science and
Technology
4Department
of Chemistry, Faculty of Science
Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
*Corresponding author: yeeching@umk.edu.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
Heterogeneous catalytic cracking is
currently one of the most effective ways for both reducing tar content and
enhancing hydrogen (H2) content in syngas at relatively low
temperature, besides being environmental friendly. Sonochemical treatment has
also been shown to lower reaction times with enhanced reaction rate and enables
production of particles with high surface area. Two different types of metal
oxides, which are Nickel Oxide (NiO) and Zirconium Oxide (ZrO2) at
combinations of 1:1, 1:2 and 2:1 ratios with Zeolite NaY as the supporter were
synthesized via sonochemical treatment. The catalysts were then characterized
using X-Ray Diffraction (XRD), Temperature Programmed Reduction in H2/Argon
(TPR-H2), Brunauer-Emmett-Teller surface measurement (BET), Scanning
Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). From SEM and TEM analysis, nickel tends to agglomerate
and form globular shapes, zirconium forms coral-like branching structure and
Zeolite NaY forms stacks of cubic clumps. The most promising NiO to ZrO2 ratio for syngas production is 1:1 because it removes
the most reactive oxygen
during hydrogen reduction at 0.83 x1021 atoms/g, has small
crystallite size at 56.90 nm and has the
highest surface area for maximum contact with the reactants at 506.52 m2/g.
Generally, sonochemical treatment also reduces the catalysts crystallite size
(54.83 nm) and increases the catalysts surface area (506.52 m2/g)
and oxygen removal (0.83 x1021 atoms/g) as well as lowers the reduction temperature (637 K)
which is favourable in term of production cost.
Keywords: heterogeneous catalysts, nickel oxide, zirconium oxide, zeolite, syngas
Abstrak
Perekahan pemangkin heterogen adalah salah satu cara terkini yang paling
efektif untuk mengurangkan kandungan tar dan juga meningkatkan kandungan hidrogen
(H2) di dalam singas pada suhu rendah, di samping mesra alam
sekitar. Rawatan sonokimia juga telah dibuktikan dapat mengurangkan masa tindak
balas di samping meningkatkan kadar tindak balas dan membolehkan penghasilan partikel
dengan luas permukaan yang tinggi. Dua jenis besi oksida berbeza, iaitu Nikel
Oksida (NiO) dan Zirkonium Oksida (ZrO2) dalam kombinasi nisbah 1:1,
1:2 dan 2:1 dan Zeolit NaY sebagai penyokong dihasilkan melalui rawatan
sonokimia. Katalis – katalis tersebut kemudian dianalis menggunakan pembelauan
sinar-X (XRD), Penurunan Suhu Berprogram
(TPR-H2), pengukuran permukaan Brunauer-Emmett-Teller (BET),
Mikroskop Imbasan Elekron (SEM) dan Mikroskop Elektron Transmisi (TEM). Daripada
analisis SEM dan TEM, nikel cenderung untuk bergumpal dan membentuk glob besar,
zirkonium membentuk struktur seperti karang bercabang dan Zeolit NaY membentuk
lapisan kubik. Nisbah NiO kepada ZrO2 yang paling berpotensi adalah
1:1 kerana ia menyingkirkan banyak oksigen yang reaktif semasa reduksi hidrogen
pada kadar 0.83 x1021 atom/g, mempunyai saiz kristal yang kecil
iaitu 56.90 nm dan mempunyai luas permukaan yang paling tinggi pada 506.52 m2/g
untuk kontak maksimum dengan bahan tindak balas. Umumnya rawatan sonokimia juga
mengurangkan saiz kristal katalis (54.83 nm) dan meningkatkan luas permukaan
pemangkin (506.52 m2/g) dan juga penyingkiran oksigen (0.83 x1021
atom/g) di samping mengurangkan suhu penurunan (637K) di mana ia adalah baik
untuk penjimatan kos pengeluaran.
Kata kunci: pemangkin heterogen, nikel oksida, zirkonium oksida,
zeolit, singas
References
1.
Serrano-Ruiz,
J. C., West, R. M. and Dumesic, J. A. (2010). Catalytic conversion of renewable
biomass resources to fuels and chemicals. Annual
Review of Chemical and Biological Engineering, 1: 79 - 100.
2.
Hu,
J., Yu, F. and Lu, Y. (2012). Application of Fischer–Tropsch synthesis in
biomass to liquid conversion. Catalysis,
2(2): 303 – 326.
3.
Rownaghi,
A. A. and Huhnke, R. L. (2013). Producing hydrogen-rich gases by steam
reforming of syngas tar over CaO/MgO/NiO catalysts. American Chemical Society Sustainable Chemistry & Engineering,
1: 80 – 86.
4.
Havran,
V., Dudukovi, M. P. and Lo, C. S. (2011). Conversion of methane and carbon
dioxide to higher value products. Industrial
& Engineering Chemistry Research, 50: 7089 – 7100.
5.
Mohammed,
M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., Mohamad Amran, M. S., Omar,
R., Taufiq-Yap, Y. H. and Ahmadun, F. R. (2012). Catalytic gasification of
empty fruit bunch for enhanced production of hydrogen rich fuel gas. Pertanika Journal of Science & Technology,
20(1): 139 – 149.
6.
Yung,
M. M., Jablonski, W. S. and Magrini-Bair, K. A. (2009). Review of catalytic
conditioning of biomass-derived syngas. Energy
& Fuels, 23: 1874 – 1887.
7.
Deghedi,
L., Basset, J. -M., Candy, J. -P., Dalmon, J. -A., Dubreuil, A-C. and Fischer,
L. (2009). Nanosized bimetallic Ni-Sn and Ni-Zr catalysts prepared by SOMC/M route:
Characterization and catalytic properties in styrene selective hydrogenation. Chemical Engineering Transaction, 17: 31
– 36.
8.
Nakayama,
O., Ikenaga, N., Miyake, T., Yagasaki, E. and Suzuki, T. (2010). Production of
synthesis gas from methane using lattice oxygen of NiO-Cr2O3-MgO
complex oxide. Industrial &
Engineering Chemistry Research, 49: 526 – 534.
9.
Moon,
D. J. (2008). Hydrogen production by catalytic reforming of gaseous
hydrocarbons (methane & LPG). Catalysis
Surveys from Asia, 12(3): 188 – 202.
10.
Simell,
P. and Kurkela, E. (2007). International Publication No. WO 2007/116121 A1.
Helsinki, Finland: World Intellectual Property Organization (WIPO).
11.
Kamaluddin.
(2013). Role of metal oxides in chemical evolution. In S. K. Chakrabarti, K.
Acharyya, & A. Das (Eds.), AIP Conference Proceedings, 1543 (1): 90
– 98.
12.
Wachs,
I. E. and Kim, T. (2009). Oxidation reactions over supported metal oxide
catalysts: Molecular/ electronic structure-activity/selectivity relationships.
In Jackson, S. D. and Hargreaves, Justin S. J. (Eds). Metal oxide catalysis. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim,
Germany: pp. 487 – 488.
13.
Lee,
D. W. and Yoo, B. R. (2014). Advance metal oxide (supoorted) catalysts: Synthesis
and applications. Journal of Industrial
and Engineering Chemistry, 20(6): 3947 – 3959.
14.
Lee,
E. L. and Wachs, I. E. (2009). Use of oxide ligands in designing catalytic
active sites. In Ozkan, U. S. (Ed). Design
of heterogeneous catalysts: new approaches based on synthesis, characterization
and modeling. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany.
15.
Gole,
V. L. and Gogate, P. R. (2012). A review on intensification of synthesis of
biodiesel from sustainable feed stock using sonochemical reactors. Chemical Engineering and Processing, 53:
1 – 9.
16.
Saminda,
D., King’ondu, C. K., Pedrick, W., Lakshitha, P. and Suib, S. L. (2012). Direct
sonochemical synthesis of manganese octahedral molecular sieve (OMS-2) nanomaterials
using cosolvent systems, their characterization, and catalytic applications. Chemistry of Materials, 24(4): 705 – 712.
17.
Sharifi,
M., Haghighi, M. and Abdollahifar, M. (2015). Sono-dispersion of bimetallic
Ni-Co over Zeolite Y used in conversion of greenhouse gases CH4/CO2
to high valued syngas. Journal of Natural
Gas Science and Engineering, 23: 547 – 558.
18.
Zhong,
Y. L. and Bernasek, S. L. (2011). Mild and efficient functionalization of
hydrogen-terminated Si(III) via sonochemical activated hydrosilylation. Journal of the American Chemical Society, 133:
8118 – 8121.
19.
Chavan,
V. P. and Gogate, P. R. (2011). Intensification of synthesis of cumene
hydroperoxide using sonochemical reactors. Industrial
& Engineering Chemistry Research. 50(22): 12433 – 12438.
20.
Zhang,
X., Jiang, W., Gong, X. and Zhang, Z. (2010). Sonochemical synthesis and
characterization of magnetic separable of Fe3O4/Ag composites
and its catalytic properties. Journal of
Alloys and Compounds, 508(2): 400 – 405.
21.
Taufiq-Yap,
Y. H., Joshua Hoh, J. R. and Wong, Y. C. (2011). Synthesis of nanostructured
vanadium phosphate catalysts using sonochemical route for partial oxidation of
n-butane. Journal of Applied Sciences, 11(13):
2370 – 2375.
22.
Meybodi,
S. M., Hosseini, S. A., Rezaee, M., Sadrnezhaad, S. K. and Mohammadyani, D. (2012).
Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical
method. Ultrasonics Sonochemistry,
19: 841 – 845.
23.
Tao,
J., Zhao, L., Dong, C., Lu, Q., Du, X. and Dahlquist, E. (2013). Catalytic steam
reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15
catalysts. Energies, 6: 3284 – 3296.
24.
Klimova, T., Pena, L., Lizama, L., Salcedo, C. and
Gutierrez, Y. (2009). Modification
of activity and selectivity of NiMo/SBa-15 HDS catalysts by grafting of
different metal oxides on the support surface. Industrial & Engineering Chemistry Research, 48: 1126 – 1133.
25.
Maciel,
C. G., Silva, T. D., Assaf, E. M. and Assaf, J. M. (2013). Hydrogen production
and purification from the water-gas shift reaction on CuO/CeO2-TiO2
Catalysts. Applied Energy, 112: 52 – 59.
26.
Pal,
P., Das, J. K., Das, N. and Bandyopadhyay, S. (2013). Synthesis of NaP Zeolite
at room temperature and short crystallization time by sonochemical method. Ultrasonics Sonochemistry, 20: 314 – 321.
27.
Monshi,
A., Foroughi, M. R. and Monshi, M. R. (2012). Modified Scherrer equation to estimate
more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2: 154 – 160.
28. Derekaya,
F. B. and Yasar, G. (2011). The
CO methanation over NaY-Zeolite supported Ni/Co3O4,
Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2
catalysts. Catalysis Communications, 13:
73 – 77.