Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 709 - 718

DOI: https://doi.org/10.17576/mjas-2017-2103-20

 

 

 

THE EFFECTS OF DIFFERENT RATIOS OF SONOCHEMICALLY ASSISTED NICKEL OXIDE AND ZIRCONIUM OXIDE CATALYSTS IN SYNGAS PRODUCTION

 

(Kesan-Kesan Pelbagai Nisbah Pemangkin Nikel Oksida dan Zirkonium Oksida dengan Rawatan Sonokimia Terhadap Penghasilan Singas)

 

Wan Nurdiyana Wan Amarina1,2, Wong Yee Ching1,2*, Taufiq Yap Yun Hin3,4

 

1Faculty of Agro Based Industry

2Faculty of Bioengineering and Technology

 Universiti Malaysia Kelantan, Locked Bag No. 100, 17600 Jeli, Kelantan, Malaysia

3Centre of Excellence for Catalysis Science and Technology

 4Department of Chemistry, Faculty of Science

 Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: yeeching@umk.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

Heterogeneous catalytic cracking is currently one of the most effective ways for both reducing tar content and enhancing hydrogen (H2) content in syngas at relatively low temperature, besides being environmental friendly. Sonochemical treatment has also been shown to lower reaction times with enhanced reaction rate and enables production of particles with high surface area. Two different types of metal oxides, which are Nickel Oxide (NiO) and Zirconium Oxide (ZrO2) at combinations of 1:1, 1:2 and 2:1 ratios with Zeolite NaY as the supporter were synthesized via sonochemical treatment. The catalysts were then characterized using X-Ray Diffraction (XRD), Temperature Programmed Reduction in H2/Argon (TPR-H2), Brunauer-Emmett-Teller surface measurement (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). From SEM and TEM analysis, nickel tends to agglomerate and form globular shapes, zirconium forms coral-like branching structure and Zeolite NaY forms stacks of cubic clumps. The most promising NiO to ZrO2 ratio for syngas production is 1:1 because it removes the most reactive oxygen during hydrogen reduction at 0.83 x1021 atoms/g, has small crystallite size at 56.90 nm and has the highest surface area for maximum contact with the reactants at 506.52 m2/g. Generally, sonochemical treatment also reduces the catalysts crystallite size (54.83 nm) and increases the catalysts surface area (506.52 m2/g) and oxygen removal (0.83 x1021 atoms/g) as well as lowers the reduction temperature (637 K) which is favourable in term of production cost.

 

Keywords:  heterogeneous catalysts, nickel oxide, zirconium oxide, zeolite, syngas

 

Abstrak

Perekahan pemangkin heterogen adalah salah satu cara terkini yang paling efektif untuk mengurangkan kandungan tar dan juga meningkatkan kandungan hidrogen (H2) di dalam singas pada suhu rendah, di samping mesra alam sekitar. Rawatan sonokimia juga telah dibuktikan dapat mengurangkan masa tindak balas di samping meningkatkan kadar tindak balas dan membolehkan penghasilan partikel dengan luas permukaan yang tinggi. Dua jenis besi oksida berbeza, iaitu Nikel Oksida (NiO) dan Zirkonium Oksida (ZrO2) dalam kombinasi nisbah 1:1, 1:2 dan 2:1 dan Zeolit NaY sebagai penyokong dihasilkan melalui rawatan sonokimia. Katalis – katalis tersebut kemudian dianalis menggunakan pembelauan sinar-X  (XRD), Penurunan Suhu Berprogram (TPR-H2), pengukuran permukaan Brunauer-Emmett-Teller (BET), Mikroskop Imbasan Elekron (SEM) dan Mikroskop Elektron Transmisi (TEM). Daripada analisis SEM dan TEM, nikel cenderung untuk bergumpal dan membentuk glob besar, zirkonium membentuk struktur seperti karang bercabang dan Zeolit NaY membentuk lapisan kubik. Nisbah NiO kepada ZrO2 yang paling berpotensi adalah 1:1 kerana ia menyingkirkan banyak oksigen yang reaktif semasa reduksi hidrogen pada kadar 0.83 x1021 atom/g, mempunyai saiz kristal yang kecil iaitu 56.90 nm dan mempunyai luas permukaan yang paling tinggi pada 506.52 m2/g untuk kontak maksimum dengan bahan tindak balas. Umumnya rawatan sonokimia juga mengurangkan saiz kristal katalis (54.83 nm) dan meningkatkan luas permukaan pemangkin (506.52 m2/g) dan juga penyingkiran oksigen (0.83 x1021 atom/g) di samping mengurangkan suhu penurunan (637K) di mana ia adalah baik untuk penjimatan kos pengeluaran.

 

Kata kunci:  pemangkin heterogen, nikel oksida, zirkonium oksida, zeolit, singas

 

References

1.       Serrano-Ruiz, J. C., West, R. M. and Dumesic, J. A. (2010). Catalytic conversion of renewable biomass resources to fuels and chemicals. Annual Review of Chemical and Biological Engineering, 1: 79 - 100.

2.       Hu, J., Yu, F. and Lu, Y. (2012). Application of Fischer–Tropsch synthesis in biomass to liquid conversion. Catalysis, 2(2): 303 – 326.

3.       Rownaghi, A. A. and Huhnke, R. L. (2013). Producing hydrogen-rich gases by steam reforming of syngas tar over CaO/MgO/NiO catalysts. American Chemical Society Sustainable Chemistry & Engineering, 1: 80 – 86.

4.       Havran, V., Dudukovi, M. P. and Lo, C. S. (2011). Conversion of methane and carbon dioxide to higher value products. Industrial & Engineering Chemistry Research, 50: 7089 – 7100.

5.       Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., Mohamad Amran, M. S., Omar, R., Taufiq-Yap, Y. H. and Ahmadun, F. R. (2012). Catalytic gasification of empty fruit bunch for enhanced production of hydrogen rich fuel gas. Pertanika Journal of Science & Technology, 20(1): 139 – 149.

6.       Yung, M. M., Jablonski, W. S. and Magrini-Bair, K. A. (2009). Review of catalytic conditioning of biomass-derived syngas. Energy & Fuels, 23: 1874 – 1887.

7.       Deghedi, L., Basset, J. -M., Candy, J. -P., Dalmon, J. -A., Dubreuil, A-C. and Fischer, L. (2009). Nanosized bimetallic Ni-Sn and Ni-Zr catalysts prepared by SOMC/M route: Characterization and catalytic properties in styrene selective hydrogenation. Chemical Engineering Transaction, 17: 31 – 36.

8.       Nakayama, O., Ikenaga, N., Miyake, T., Yagasaki, E. and Suzuki, T. (2010). Production of synthesis gas from methane using lattice oxygen of NiO-Cr2O3-MgO complex oxide. Industrial & Engineering Chemistry Research, 49: 526 – 534.

9.       Moon, D. J. (2008). Hydrogen production by catalytic reforming of gaseous hydrocarbons (methane & LPG). Catalysis Surveys from Asia, 12(3): 188 – 202.

10.    Simell, P. and Kurkela, E. (2007). International Publication No. WO 2007/116121 A1. Helsinki, Finland: World Intellectual Property Organization (WIPO).

11.    Kamaluddin. (2013). Role of metal oxides in chemical evolution. In S. K. Chakrabarti, K. Acharyya, & A. Das (Eds.), AIP Conference Proceedings, 1543 (1): 90 – 98.

12.    Wachs, I. E. and Kim, T. (2009). Oxidation reactions over supported metal oxide catalysts: Molecular/ electronic structure-activity/selectivity relationships. In Jackson, S. D. and Hargreaves, Justin S. J. (Eds). Metal oxide catalysis. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany: pp. 487 – 488.

13.    Lee, D. W. and Yoo, B. R. (2014). Advance metal oxide (supoorted) catalysts: Synthesis and applications. Journal of Industrial and Engineering Chemistry, 20(6): 3947 – 3959.

14.    Lee, E. L. and Wachs, I. E. (2009). Use of oxide ligands in designing catalytic active sites. In Ozkan, U. S. (Ed). Design of heterogeneous catalysts: new approaches based on synthesis, characterization and modeling. WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany.

15.    Gole, V. L. and Gogate, P. R. (2012). A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chemical Engineering and Processing, 53: 1 – 9.

16.    Saminda, D., King’ondu, C. K., Pedrick, W., Lakshitha, P. and Suib, S. L. (2012). Direct sonochemical synthesis of manganese octahedral molecular sieve (OMS-2) nanomaterials using cosolvent systems, their characterization, and catalytic applications. Chemistry of Materials, 24(4): 705 – 712. 

17.    Sharifi, M., Haghighi, M. and Abdollahifar, M. (2015). Sono-dispersion of bimetallic Ni-Co over Zeolite Y used in conversion of greenhouse gases CH4/CO2 to high valued syngas. Journal of Natural Gas Science and Engineering, 23: 547 – 558.

18.    Zhong, Y. L. and Bernasek, S. L. (2011). Mild and efficient functionalization of hydrogen-terminated Si(III) via sonochemical activated hydrosilylation. Journal of the American Chemical Society, 133: 8118 – 8121.

19.    Chavan, V. P. and Gogate, P. R. (2011). Intensification of synthesis of cumene hydroperoxide using sonochemical reactors. Industrial & Engineering Chemistry Research. 50(22): 12433 – 12438.

20.    Zhang, X., Jiang, W., Gong, X. and Zhang, Z. (2010). Sonochemical synthesis and characterization of magnetic separable of Fe3O4/Ag composites and its catalytic properties. Journal of Alloys and Compounds, 508(2): 400 – 405.

21.    Taufiq-Yap, Y. H., Joshua Hoh, J. R. and Wong, Y. C. (2011). Synthesis of nanostructured vanadium phosphate catalysts using sonochemical route for partial oxidation of n-butane. Journal of Applied Sciences, 11(13): 2370 – 2375.

22.    Meybodi, S. M., Hosseini, S. A., Rezaee, M., Sadrnezhaad, S. K. and Mohammadyani, D. (2012). Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrasonics Sonochemistry, 19: 841 – 845.

23.    Tao, J., Zhao, L., Dong, C., Lu, Q., Du, X. and Dahlquist, E. (2013). Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15 catalysts. Energies, 6: 3284 – 3296.

24.    Klimova, T., Pena, L., Lizama, L., Salcedo, C. and Gutierrez, Y. (2009). Modification of activity and selectivity of NiMo/SBa-15 HDS catalysts by grafting of different metal oxides on the support surface. Industrial & Engineering Chemistry Research, 48: 1126 – 1133.

25.    Maciel, C. G., Silva, T. D., Assaf, E. M. and Assaf, J. M. (2013). Hydrogen production and purification from the water-gas shift reaction on CuO/CeO2-TiO2 Catalysts. Applied Energy, 112: 52 – 59.

26.    Pal, P., Das, J. K., Das, N. and Bandyopadhyay, S. (2013). Synthesis of NaP Zeolite at room temperature and short crystallization time by sonochemical method. Ultrasonics Sonochemistry, 20: 314 – 321.

27.    Monshi, A., Foroughi, M. R. and Monshi, M. R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2: 154 – 160.

28.     Derekaya, F. B. and Yasar, G. (2011). The CO methanation over NaY-Zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2 catalysts. Catalysis Communications, 13: 73 – 77.

 




Previous                    Content                    Next