Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 719 - 725

DOI: https://doi.org/10.17576/mjas-2017-2103-21

 

 

 

PRELIMINARY STUDY OF SULFUR DIOXIDE REMOVAL USING CALCINED EGG SHELL

 

(Kajian Awal Penyingkiran Sulfur Dioksida Menggunakan Kulit Telur Yang Di Kalsin)

 

Sumathi Sethupathi1*, Yap Chen Kai1, Leong Loong Kong2, Yamuna Munusamy1, Mohamed Jaber Khalil Bashir1, Nurshasabila Iberahim1

 

1Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia

2LKC Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia

 

*Corresponding author: sumathi@utar.edu.my

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

The combustion of coal for energy had created severe environmental issues mainly due to the release of particulate matter and flue gases containing sulphur dioxide (SO2) during the processing. At present limestone based adsorbent is used to desulphurize flue gas. Egg shell is a type of food waste and it contains high amount of calcium carbonate which is similar to limestone. In this study, the potential of egg shell as a substitute material to replace commercial limestone based calcium oxide was investigated. Waste egg shell and commercial calcium carbonate (limestone)(CCC) were calcined at various temperatures (750 – 950 ºC) and holding time (2 and 4 hours). The calcined samples were tested for SO2 adsorption using a gas reactor at room temperature with a flow rate of 300 mL/min. The initial concentration of SO2 is 200 ppm. Characterization of the adsorbents will be done using Fourier Transform Infrared (FTIR), Brunauer-Emmett-Teller (BET) and X-ray Diffraction (XRD) to understand the sorption behavior. Calcined egg shell and calcined CCC takes about 110 min and 180 min for saturation. It is noted that calcined egg shell could remove SO2 alike calcined CCC. However, the adsorption capacity of egg shell is lower compared to CCC and this could be due to impurities.

 

Keywords:  sulphur dioxide, adsorption, egg shell, calcium carbonate

 

Abstrak

Pembakaran arang batu untuk sumber tenaga telah mewujudkan isu-isu alam sekitar yang teruk disebabkan oleh pembebasan habuk tertentu dan gas serombong yang mengandungi sulfur dioksida (SO2) semasa pemprosesan. Pada masa ini, batu kapur berasaskan serapan digunakan untuk menyingkirkan gas serombong. Kulit telur adalah sejenis sisa makanan dan ia mengandungi jumlah kalsium karbonat yang tinggi dan sama seperti batu kapur. Dalam kajian ini, potensi kulit telur sebagai bahan pengganti untuk menggantikan kalsium oksida daripada batu kapur komersial telah dikaji. Sisa kulit telur dan kalsium karbonat komersial (batu kapur) (CCC) telah dibakar pada pelbagai suhu (750 – 950 ºC) dan masa induk (2 and 4 jam). Sampel yang telah dibakar kemudian diuji untuk penyerapan SO2 menggunakan reaktor gas pada suhu bilik dengan kadar aliran 300 mL/min. Kepekatan awal SO2 adalah 200 ppm. Pencirian serapan dilakukan dengan menggunakan Infra merah Transformasi Fourier (FTIR), Brunauer-Emmett-Teller (BET) dan pembelauan Sinar-X (XRD) untuk memahami keadaan penyerapan itu. Kalsin kulit telur and kalsin CCC masing-masing memerlukan tempoh selama 110 min and 180 min untuk mencapai ketepuan. Ternyata bahawa kalsin kulit telur boleh menyingkirkan SO2 seperti kalsin CCC. Walau bagaimanapun, kapasiti penyerapan kalsin kulit telur lebih rendah berbanding dengan kalsin CCC yang mungkin disebabkan oleh berhadas.  

 

Kata kunci:  sulfur dioksida, penyerapan, kulit telur, kalsium karbonat

 

References

1.       Liu, Y., Bisson, T. M., Yang, H. Q. and Xu, Z. H. (2010). Recent developments in novel sorbents for flue gas clean up. Fuel Processing Technology, 91: 1175 – 1197.

2.       Lawrence, K. W., Norman, C. P. and Hung, Y. T. (2005). Advanced air and noise pollution control. Handbook of Environmental Engineering. Humana Press Inc. New Jersey.

3.       Kallinikos, L. E., Farsari, E. I., Spatinos, D. N. and Papayannakos, N. G. (2010). Simulation of the operation of an industrial wet flue gas desulphuriztion system. Fuel Processing Technology, 91: 1794 – 1802.

4.       Li, J. J., Kobayashi, N. and Hu, Y. Q. (2008). The activated coke preparation for SO2 adsorption by using flue gas from coal power plant. Chemical Engineering and Processing, 47: 118 – 127.

5.       Rubio, B. and Izquierdo, M. T. (2010) Coal fly ash based carbon for SO2 removal from flue gases. Waste Management, 30: 1341 – 1347.

6.       Sumathi, S., Bhatia, S., Lee, K. T. and Mohamed, A. R. (2010). Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC). Chemical Engineering Journal, 162(1): 194 – 200.

7.       Sonenklar, C. (1999). Famous for eggwaste, penn state news. Access online http://news.psu.edu/ story/140891/1999/09/01/research/famous-egg-waste [ Date access 21st August 2016].

8.       Rohim, R., Ahmad, R., Ibrahim, N., Hamidin, N. and Abidin, C. Z. A. (2014). Characterization of calcium oxide catalyst from eggshell waste. Advances in Environmental Biology, 8: 35 – 38.

9.       Ho, W. F., Hsu, H. C., Hsu, S. K., Hung, C. W. and Wu, S. C. (2013). Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceramic International, 39(6): 6467 –6473.

10.    Soares, M. R., Andrade, S. R., Martins, R. C., Quina, M. J. and Quinta-Ferreira, R. M. (2012). Organic biowastes blend selection for composting industrial eggshell by-product: Experimental and statistical mixture design. Water Science and Technology, 65(11): 1939 – 1945.

11.    Wei, Z., Xu, C. and Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresources Technology, 100(11): 2883 – 2885.

12.    Glatz, P., Miao, Z. and Rodda, B. (2011). Handling and treatment of poultry hatchery waste: Review. Sustainability, 3: 216 – 237.

13.    Oliveira, D. A., Benelli, P. and Amante, E. R. (2013) A literature review on adding value to solid residue: Eggshell. Journal of Cleaner Production, 46: 42 –  47.

14.    Cheremisinoff, P. N. (1993). Air pollution control and design for industry. New York.

15.    Joshi, G., Devendra, S. R., Bhawna Y. L., Kamal K. B., Pankaj K., Nayan K. and Sanjay K. (2015). Transesterification of jatropha and karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Conversion and Management, 96: 258 – 267.

16.    Hu, G., Dam-Johansen, K., Wedel S. and Hansen, J. P. (2006). Review of the direct sulfation reaction of limestone. Progress in Energy and Combustion Science, 32: 386 – 407.

17.    Witoon, T. (2011). Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramic International, 37: 3291 – 3298.

18.    Lin, R. B., Shih, S. M. (2003). Characterization of Ca(OH)2/fly ash sorbents for flue gas desulphurization. Powder Technology, 131: 212 – 222.

19.    Piker, A., Tabah, B., Perkas, N. and Gedanken, A. (2016). A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel, 182: 34 – 41.

20.    Gergely, G., Weber, F., Lukacs, I., Toth, A. L., Horvath, Z. E., Mihaly, J. and Balazsi, C. (2010). Preparation and characterization of hydroxyapatite from eggshell, Ceramic International, 36: 803 – 806.

 




Previous                    Content                    Next