Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 719 - 725
DOI:
https://doi.org/10.17576/mjas-2017-2103-21
PRELIMINARY
STUDY OF SULFUR DIOXIDE REMOVAL USING CALCINED EGG SHELL
(Kajian Awal
Penyingkiran Sulfur Dioksida Menggunakan Kulit Telur Yang Di Kalsin)
Sumathi Sethupathi1*, Yap Chen Kai1, Leong Loong
Kong2, Yamuna Munusamy1, Mohamed Jaber Khalil Bashir1,
Nurshasabila Iberahim1
1Faculty of Engineering and Green Technology,
Universiti
Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
2LKC Faculty of Engineering and Science,
Universiti
Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
*Corresponding author: sumathi@utar.edu.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
The combustion of coal for energy had created severe environmental
issues mainly due to the release of particulate matter and flue gases
containing sulphur dioxide (SO2) during the processing. At present
limestone based adsorbent is used to desulphurize flue gas. Egg shell is a type
of food waste and it contains high amount of calcium carbonate which is similar
to limestone. In this study, the potential of egg shell as a substitute
material to replace commercial limestone based calcium oxide was investigated.
Waste egg shell and commercial calcium carbonate (limestone)(CCC) were calcined
at various temperatures (750 – 950 ºC) and holding time (2 and 4 hours). The calcined samples were tested
for SO2 adsorption using a gas reactor at room temperature with a
flow rate of 300 mL/min. The initial concentration of SO2 is 200
ppm. Characterization of the adsorbents will be done using Fourier Transform
Infrared (FTIR), Brunauer-Emmett-Teller (BET) and X-ray Diffraction (XRD) to
understand the sorption behavior. Calcined egg shell and calcined CCC takes
about 110 min and 180 min for saturation. It is noted that calcined egg shell
could remove SO2 alike calcined CCC. However, the adsorption
capacity of egg shell is lower compared to CCC and this could be due to
impurities.
Keywords: sulphur dioxide, adsorption, egg shell,
calcium carbonate
Abstrak
Pembakaran arang batu
untuk sumber tenaga telah mewujudkan isu-isu alam sekitar yang teruk disebabkan
oleh pembebasan habuk tertentu dan gas serombong yang mengandungi sulfur
dioksida (SO2) semasa pemprosesan. Pada masa ini, batu kapur
berasaskan serapan digunakan untuk menyingkirkan gas serombong. Kulit telur
adalah sejenis sisa makanan dan ia mengandungi jumlah kalsium karbonat yang
tinggi dan sama seperti batu kapur. Dalam kajian ini, potensi kulit telur
sebagai bahan pengganti untuk menggantikan kalsium oksida daripada batu kapur
komersial telah dikaji. Sisa kulit telur dan kalsium karbonat komersial (batu
kapur) (CCC) telah dibakar pada pelbagai suhu (750 – 950 ºC) dan masa induk (2
and 4 jam). Sampel yang telah dibakar kemudian diuji
untuk penyerapan SO2 menggunakan reaktor gas pada suhu bilik dengan
kadar aliran 300 mL/min. Kepekatan awal SO2 adalah 200 ppm. Pencirian
serapan dilakukan dengan menggunakan Infra merah Transformasi Fourier (FTIR),
Brunauer-Emmett-Teller (BET) dan pembelauan Sinar-X (XRD) untuk memahami
keadaan penyerapan itu. Kalsin kulit telur and kalsin CCC masing-masing
memerlukan tempoh selama 110 min and 180 min untuk mencapai ketepuan. Ternyata
bahawa kalsin kulit telur boleh menyingkirkan SO2 seperti kalsin
CCC. Walau bagaimanapun, kapasiti penyerapan kalsin kulit telur lebih rendah
berbanding dengan kalsin CCC yang mungkin disebabkan oleh berhadas.
Kata
kunci: sulfur dioksida,
penyerapan, kulit telur, kalsium karbonat
References
1. Liu, Y., Bisson,
T. M., Yang, H. Q. and Xu, Z. H. (2010). Recent developments in novel sorbents
for flue gas clean up. Fuel Processing
Technology, 91: 1175 – 1197.
2. Lawrence, K. W.,
Norman, C. P. and Hung, Y. T. (2005). Advanced air and noise pollution control.
Handbook of Environmental Engineering. Humana Press Inc. New Jersey.
3. Kallinikos, L. E.,
Farsari, E. I., Spatinos, D. N. and Papayannakos, N. G. (2010). Simulation of
the operation of an industrial wet flue gas desulphuriztion system. Fuel Processing Technology, 91: 1794 – 1802.
4. Li, J. J.,
Kobayashi, N. and Hu, Y. Q. (2008). The activated coke preparation for SO2
adsorption by using flue gas from coal power plant. Chemical Engineering and Processing, 47: 118 – 127.
5. Rubio, B. and
Izquierdo, M. T. (2010) Coal fly ash based carbon for SO2 removal
from flue gases. Waste Management,
30: 1341 – 1347.
6. Sumathi, S.,
Bhatia, S., Lee, K. T. and Mohamed, A. R. (2010). Adsorption isotherm models
and properties of SO2 and NO removal by palm shell activated carbon
supported with cerium (Ce/PSAC). Chemical
Engineering Journal, 162(1): 194 – 200.
7. Sonenklar, C. (1999).
Famous for eggwaste, penn state news. Access online http://news.psu.edu/
story/140891/1999/09/01/research/famous-egg-waste [ Date access 21st
August 2016].
8. Rohim, R., Ahmad,
R., Ibrahim, N., Hamidin, N. and Abidin, C. Z. A. (2014). Characterization of calcium
oxide catalyst from eggshell waste. Advances
in Environmental Biology, 8: 35 – 38.
9. Ho, W. F., Hsu,
H. C., Hsu, S. K., Hung, C. W. and Wu, S. C. (2013). Calcium phosphate
bioceramics synthesized from eggshell powders through a solid state reaction. Ceramic International, 39(6): 6467 –6473.
10. Soares, M. R.,
Andrade, S. R., Martins, R. C., Quina, M. J. and Quinta-Ferreira, R. M. (2012).
Organic biowastes blend selection for composting industrial eggshell
by-product: Experimental and statistical mixture design. Water Science and Technology, 65(11): 1939 – 1945.
11. Wei, Z., Xu, C.
and Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for
biodiesel production. Bioresources Technology,
100(11): 2883 – 2885.
12. Glatz, P., Miao,
Z. and Rodda, B. (2011). Handling and treatment of poultry hatchery waste:
Review. Sustainability, 3: 216 – 237.
13. Oliveira, D. A.,
Benelli, P. and Amante, E. R. (2013) A literature review on adding value to solid
residue: Eggshell. Journal of Cleaner
Production, 46: 42 –
47.
14. Cheremisinoff,
P. N. (1993). Air pollution control and design for industry. New York.
15. Joshi, G.,
Devendra, S. R., Bhawna Y. L., Kamal K. B., Pankaj K., Nayan K. and Sanjay K.
(2015). Transesterification of jatropha and karanja oils by using waste egg
shell derived calcium based mixed metal oxides. Energy Conversion and Management, 96: 258 – 267.
16. Hu, G.,
Dam-Johansen, K., Wedel S. and Hansen, J. P. (2006). Review of the direct
sulfation reaction of limestone. Progress
in Energy and Combustion Science, 32: 386 – 407.
17. Witoon, T.
(2011). Characterization of calcium oxide derived from waste eggshell and its
application as CO2 sorbent. Ceramic
International, 37: 3291 – 3298.
18. Lin, R. B.,
Shih, S. M. (2003). Characterization of Ca(OH)2/fly ash sorbents for
flue gas desulphurization. Powder
Technology, 131: 212 – 222.
19. Piker, A.,
Tabah, B., Perkas, N. and Gedanken, A. (2016). A green and low-cost room
temperature biodiesel production method from waste oil using egg shells as
catalyst. Fuel, 182: 34 – 41.
20. Gergely, G.,
Weber, F., Lukacs, I., Toth, A. L., Horvath, Z. E., Mihaly, J. and Balazsi, C. (2010).
Preparation and characterization of hydroxyapatite from eggshell, Ceramic International, 36: 803 – 806.