Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 735 - 744
DOI:
https://doi.org/10.17576/mjas-2017-2103-23
ALGAE
OIL EXTRACTION FROM FRESHWATER MICROALGAE Chlorella
vulgaris
(Pengekstrakan Minyak Alga Daripada Mikroalga Air Tawar Chlorella vulgaris)
Nurfarahanim Abdullah, Nur Amelia Amran, Nur Hidayah Mat Yasin*
Faculty
of Chemical Engineering & Natural Resources,
Universiti
Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
*Corresponding author: hidayahyassin@ump.edu.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
This research aims to investigate the
optimum condition of oil extraction method to extract maximum oil yield from
freshwater microalgae Chlorella vulgaris.
The modified soxhlet extraction method was used to identify the best solvent
systems which are heptane, heptane: methanol (1:1), heptane: methanol (1:2),
heptane: ethanol (1:1) and heptane: ethanol (1:2) for extracting the microalgae
oil. The effect of different mixing rate (rpm), temperature (oC) and
extraction time (hours) were carried out using the optimized solvent system to
evaluate the optimum condition of oil extraction. Based on the yield of oil
extraction, heptane alone become the best solvent to extract the oil with the
yield of 57.5%, followed by heptane: methanol (1:2), heptane: ethanol (1:1),
heptane: ethanol (1:2) and heptane: methanol (1:1) with the yield of 47.5%,
44.8%, 43.2% and 41.4%, respectively. Maximum oil quantity of 61.27% was
obtained after extracted the Chlorella
vulgaris biomass using heptane as a solvent at the following optimal
conditions: mixing rate of 600 rpm, temperature of 65 °C and extraction time of
5 hours. This study confirmed that an increasing temperature resulted in the
increased of oil yield, but at higher temperature (greater than 65 °C), the oil
yield was decreasing. Too high of temperature in oil extraction may cause partial
decomposition of the microalgae cells and thus lowering the yield of oil
extracted.
Keywords: soxhlet extraction, oil extraction, freshwater
microalgae, Chlorella vulgaris,
solvent systems
Abstrak
Kajian ini bertujuan
untuk mengkaji keadaan optimum bagi kaedah pengekstrakan minyak dalam usaha
untuk mendapatkan hasil minyak maksimum daripada mikroalga air tawar Chlorella vulgaris. Kaedah pengekstrakan
soxhlet yang diubah suai digunakan untuk mengenal pasti sistem pelarut yang terbaik
iaitu heptana, heptana: metanol (1:1), heptana: metanol (1:2), heptana: etanol
(1:1) dan heptana: etanol (1:2) untuk mengekstrak minyak mikroalga. Kesan
daripada kadar pencampuran yang berbeza (rpm), suhu (oC) dan masa
pengekstrakan (jam) telah dijalankan dengan menggunakan sistem pelarut yang
telah dioptimumkan untuk menilai keadaan optimum pengekstrakan minyak.
Berdasarkan hasil pengeluaran minyak, heptana bersendirian menjadi pelarut
terbaik untuk mengeluarkan minyak dengan hasil sebanyak 57.5%, diikuti oleh
heptana: metanol (1:2), heptana: etanol (1:1), heptana: etanol (1:2) dan
heptana: metanol (1:1) dengan hasil masing – masing 47.5%, 44.8%, 43.2% dan
41.4%. Kuantiti minyak maksimum 61.27% telah diperolehi selepas biojisim Chlorella vulgaris diekstrak menggunakan
heptana sebagai pelarut pada keadaan optimum berikut: kadar percampuran 600
rpm, suhu 65 oC dan 5 jam masa pengekstrakan. Kajian ini mengesahkan
bahawa suhu meningkat menyebabkan peningkatan hasil minyak, tetapi pada suhu
yang lebih tinggi (lebih daripada 65 oC), hasil minyak telah
berkurangan. Suhu yang terlalu tinggi dalam pengekstrakan minyak boleh
menyebabkan penguraian sebahagian daripada sel-sel alga dan seterusnya
mengurangkan hasil minyak yang dikeluarkan.
Kata kunci: pengekstrakan soxhlet, pengekstrakan minyak,
mikroalga air tawar, Chlorella vulgaris,
sistem pelarut
References
1.
Hannon, M., Gimpel, J., Tran, M., Rasala,
B. and Mayfields, S. (2010). Biofuels from alga: Challenges and potential. Biofuels, 1(5): 763 – 784.
2.
Demirbas, A. (2009). Production of
biodiesel from algae oils. Energy Sources
A, 31: 163 – 168.
3.
Demirbas, A. and Demirbas, F. M. (2011). Importance
of algae oil as a source of biodiesel. Energy Conversion and Management,
52: 163 – 170.
4.
Chisti Y. (2007). Biodiesel from
microalgae. Biotechnology Advances,
25: 294 – 306.
5.
Islam, M. A., Brown, R. J., O’Hara, I., Kent,
M. and Heimann, K. (2014). Effect of temperature and moisture on high pressure
lipid/oil extraction from microalgae. Energy
Conversion and Management, 88: 307 – 316.
6.
Weingarten, H. (2015). What is expeller
and why does it matter. Retrieved from http://blog.fooducate.com/2010/12/08/what-is-expeller-pressed-oil-and-why-does-itmatter/http://biofuel.
org.uk /second-generation-biofuels.html. Date access 25 November 2015.
7.
Mongkholkhajornsilp, D., Donglas, P. L.,
Elkamel, A., Tepparitoon, W. and Pongamphair, S. (2004). Supercritical CO2
extraction of nimbim from neem seeds-a modeling study. Journal of Food Engineering, 71(4): 331 – 340.
8.
Niraj,
S. T., Sunita, J. R., Renge, V. C., Satish, V. K., Chavan, Y. P. and Bhagat, S.
L. (2011). Extraction of oil from algae by solvent
extraction and oil expeller method. International
Journal Chemical Science, 9(4): 1746 – 1750.
9.
Ahmad, A. L., Mat Yasin, N. H., Derek, C.
J. C and Lim, J. K. (2013). Microfiltration of Chlorella sp.: Influence
of material and membrane pore size. Membrane
Water Treatment, 4(2): 143 – 155.
10.
Kirolia, A., Bishnoi, N. R. and Singh, R.
(2013). Microalgae as a boon for sustainable energy production and its future
research and development aspects. Renewable
and Sustainable Energy Review, 20: 642 – 656.
11.
Mata, T. M., Martins, A. A. and Caetano,
N. S. (2010). Microalgae for biodiesel production and other applications: A review.
Renewable and Sustainable Energy Review,
14: 217 – 232.
12.
Al-Iwayzy,
S. H., Yusaf, T. and Al-Juboori, R. A. (2014).
Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for
diesel engines. Energies, 7: 1829 – 1851.
13.
Ahmad, A. L., Mat Yasin, N. H., Derek, C.
J. C and Lim, J. K. (2014). Chemical cleaning of a cross-flow microfiltration
membrane fouled by microalgal biomass. Journal
of Taiwan Institute of Chemical Engineers, 45: 233 – 241.
14.
Halim, R., Gladman, B., Danquah, M. K.
and Webley, P. A. (2011). Oil extraction from microalgae for biodiesel production.
Bioresource Technology, 102: 178 – 185.
15.
Ahmad, A. L., Mat Yasin, N. H., Derek, C.
J. C and Lim, J. K. (2014). Comparison of harvesting methods for microalgae Chlorella
vulgaris sp. and its potential use as a biodiesel feedstock. Environmental
Technology, 35(17-20): 2244 – 2253.
16.
Gutierrez, L. F., Ratti, C. and Belkacemin
K. (2008). Effects of drying method on the extraction yields and quality of
oils from quebec sea buckhtom (Hipphophaerhamnoides L.) seeds and pulp. Food Chemistry, 106: 896 – 904.
17.
Rezaie,
M., Farhoosh, R., Iranshahi, M., Sharif, A. and Golmohamadzadeh, S. (2015).
Ultrasonic- assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. Mutica) hull
using various solvents of different physicochemical properties. Food Chemistry, 173: 577 – 583.
18.
Reichardt,
C. and Welton, T. (2011). Solvents and solvent effects in organic chemistry.
John Wiley & Sons.
19.
Wijekon,
M., Bhat, R. and Karim, A. A. (2011). Effect of extraction solvents on the
phenolic compounds and antioxidant activities of bunga kantan (Etlingera
elatior Jack) inflorescence. Journal
of Food Composition and Analysis, 24: 615 – 619.
20.
Conkerton,
E. J., Wan, P. J. and Richard, O. A. (1995). Hexane and heptane as extraction
solvents for cottonseed: A laboratory-scale study. Journal of American Oil
Chemical Society, 72: 963 – 965.
21.
Ryckebosch,
E., Myuylaert, K. and Foubert, I. (2012). Optimisation of an analytical
procedure for extraction of oils from microalgae. Journal of American Oil Chemical Society, 89: 189 – 198.
22.
Li,
Y., Naghdi, F. G., Garg, S., Adarme-Vega, T. C., Thurecht, K. J., Ghafor, W.
A., Tannock, S. and Schenk P. M. (2013). A comparative study: the impact of
different oil extraction methods on current microalgal oil research. Microbial Cell Factories, 13: 1475 – 2859.
23.
Shen,
Y., Pei, Z. J., Yuan, W. Q. and Mao, E. R. (2009). Effect of nitrogen and
extraction method on algae oil yield. International
Journal of Agriculture and Biology Engineering, 2: 51 – 57.
24.
Suganya, T. and Renganathan, S. (2012). Optimization
and kinetic studies on algae oil extraction from marine macroalgae Ulvalactuca.
Bioresources Technology, 107: 319 – 326.
25.
Kadi, H. and Fellag, H. (2110). Modeling
of oil extraction from olive foot cake using hexane. Grass Aceitas, 52: 369 – 372.
26.
Roop, R. K., Akgerman, A., Dexter, B. J. and
Irvin, T. R. (1989). Extraction of phenol from water with supercritical carbon
dioxide. Journal of Supercrital Fluids,
2: 51 – 56.
27.
Wang, L., Yang, B., Du, X. and Yi, C.
(2008). Optimization of supercritical extraction of flavonoids from Puerarialabota.
Food Chemistry. 108: 737 – 741.
28.
Fang, Z., Smith, R. L. and Qi, X. H.
(2015). Production of biofuels and chemicals with ultrasound. Journal of Food Engineering, 5: 147 – 148.
29.
Bimakr, M., Abdul Rahman, R., Taip, F.
S., Ganjiloo, A., MdSalleh, L., Selamat, J., Hamid, A. and Zaidul, A. S. M.
(2011). Comparison of different extraction methods for the extraction of major
bioactive flavonoid compounds from Spearmint (Menthaspicata L.) leaves. Food and Bioprocess, 89: 67 – 72.
30.
McConnel, B. and Farag, H. I. (2013). Kinetics
study of the solvent extraction of lipids from Chlorella vulgaris. International
Journal of Engineering and Technical Research, 10: 1 – 10.