Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 735 - 744

DOI: https://doi.org/10.17576/mjas-2017-2103-23

 

 

 

ALGAE OIL EXTRACTION FROM FRESHWATER MICROALGAE Chlorella vulgaris

 

(Pengekstrakan Minyak Alga Daripada Mikroalga Air Tawar Chlorella vulgaris)

 

Nurfarahanim Abdullah, Nur Amelia Amran, Nur Hidayah Mat Yasin*

 

Faculty of Chemical Engineering & Natural Resources,

Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

 

*Corresponding author: hidayahyassin@ump.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

This research aims to investigate the optimum condition of oil extraction method to extract maximum oil yield from freshwater microalgae Chlorella vulgaris. The modified soxhlet extraction method was used to identify the best solvent systems which are heptane, heptane: methanol (1:1), heptane: methanol (1:2), heptane: ethanol (1:1) and heptane: ethanol (1:2) for extracting the microalgae oil. The effect of different mixing rate (rpm), temperature (oC) and extraction time (hours) were carried out using the optimized solvent system to evaluate the optimum condition of oil extraction. Based on the yield of oil extraction, heptane alone become the best solvent to extract the oil with the yield of 57.5%, followed by heptane: methanol (1:2), heptane: ethanol (1:1), heptane: ethanol (1:2) and heptane: methanol (1:1) with the yield of 47.5%, 44.8%, 43.2% and 41.4%, respectively. Maximum oil quantity of 61.27% was obtained after extracted the Chlorella vulgaris biomass using heptane as a solvent at the following optimal conditions: mixing rate of 600 rpm, temperature of 65 °C and extraction time of 5 hours. This study confirmed that an increasing temperature resulted in the increased of oil yield, but at higher temperature (greater than 65 °C), the oil yield was decreasing. Too high of temperature in oil extraction may cause partial decomposition of the microalgae cells and thus lowering the yield of oil extracted.

 

Keywords:  soxhlet extraction, oil extraction, freshwater microalgae, Chlorella vulgaris, solvent systems

 

Abstrak

Kajian ini bertujuan untuk mengkaji keadaan optimum bagi kaedah pengekstrakan minyak dalam usaha untuk mendapatkan hasil minyak maksimum daripada mikroalga air tawar Chlorella vulgaris. Kaedah pengekstrakan soxhlet yang diubah suai digunakan untuk mengenal pasti sistem pelarut yang terbaik iaitu heptana, heptana: metanol (1:1), heptana: metanol (1:2), heptana: etanol (1:1) dan heptana: etanol (1:2) untuk mengekstrak minyak mikroalga. Kesan daripada kadar pencampuran yang berbeza (rpm), suhu (oC) dan masa pengekstrakan (jam) telah dijalankan dengan menggunakan sistem pelarut yang telah dioptimumkan untuk menilai keadaan optimum pengekstrakan minyak. Berdasarkan hasil pengeluaran minyak, heptana bersendirian menjadi pelarut terbaik untuk mengeluarkan minyak dengan hasil sebanyak 57.5%, diikuti oleh heptana: metanol (1:2), heptana: etanol (1:1), heptana: etanol (1:2) dan heptana: metanol (1:1) dengan hasil masing – masing 47.5%, 44.8%, 43.2% dan 41.4%. Kuantiti minyak maksimum 61.27% telah diperolehi selepas biojisim Chlorella vulgaris diekstrak menggunakan heptana sebagai pelarut pada keadaan optimum berikut: kadar percampuran 600 rpm, suhu 65 oC dan 5 jam masa pengekstrakan. Kajian ini mengesahkan bahawa suhu meningkat menyebabkan peningkatan hasil minyak, tetapi pada suhu yang lebih tinggi (lebih daripada 65 oC), hasil minyak telah berkurangan. Suhu yang terlalu tinggi dalam pengekstrakan minyak boleh menyebabkan penguraian sebahagian daripada sel-sel alga dan seterusnya mengurangkan hasil minyak yang dikeluarkan.

 

Kata kunci:  pengekstrakan soxhlet, pengekstrakan minyak, mikroalga air tawar, Chlorella vulgaris, sistem pelarut

 

References

1.       Hannon, M., Gimpel, J., Tran, M., Rasala, B. and Mayfields, S. (2010). Biofuels from alga: Challenges and potential. Biofuels, 1(5): 763 – 784.

2.       Demirbas, A. (2009). Production of biodiesel from algae oils. Energy Sources A, 31: 163 – 168.

3.       Demirbas, A. and Demirbas, F. M. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52: 163 – 170.

4.       Chisti Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25: 294 – 306.

5.       Islam, M. A., Brown, R. J., O’Hara, I., Kent, M. and Heimann, K. (2014). Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae. Energy Conversion and Management, 88: 307 – 316.

6.       Weingarten, H. (2015). What is expeller and why does it matter. Retrieved from http://blog.fooducate.com/2010/12/08/what-is-expeller-pressed-oil-and-why-does-itmatter/http://biofuel. org.uk /second-generation-biofuels.html. Date access 25 November 2015.

7.       Mongkholkhajornsilp, D., Donglas, P. L., Elkamel, A., Tepparitoon, W. and Pongamphair, S. (2004). Supercritical CO2 extraction of nimbim from neem seeds-a modeling study. Journal of Food Engineering, 71(4): 331 – 340.

8.       Niraj, S. T., Sunita, J. R., Renge, V. C., Satish, V. K., Chavan, Y. P. and Bhagat, S. L. (2011). Extraction of oil from  algae  by  solvent  extraction and oil expeller method. International Journal Chemical Science, 9(4): 1746 – 1750.

9.       Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C and Lim, J. K. (2013). Microfiltration of Chlorella sp.: Influence of material and membrane pore size. Membrane Water Treatment, 4(2): 143 – 155.

10.    Kirolia, A., Bishnoi, N. R. and Singh, R. (2013). Microalgae as a boon for sustainable energy production and its future research and development aspects. Renewable and Sustainable Energy Review, 20: 642 – 656.

11.    Mata, T. M., Martins, A. A. and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Review, 14: 217 – 232.

12.    Al-Iwayzy, S. H., Yusaf, T. and Al-Juboori, R. A.  (2014). Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, 7: 1829 – 1851.

13.    Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C and Lim, J. K. (2014). Chemical cleaning of a cross-flow microfiltration membrane fouled by microalgal biomass. Journal of Taiwan Institute of Chemical Engineers, 45: 233 – 241.

14.    Halim, R., Gladman, B., Danquah, M. K. and Webley, P. A. (2011). Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102: 178 – 185.

15.    Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C and Lim, J. K. (2014). Comparison of harvesting methods for microalgae Chlorella vulgaris sp. and its potential use as a biodiesel feedstock. Environmental Technology, 35(17-20): 2244 – 2253.

16.    Gutierrez, L. F., Ratti, C. and Belkacemin K. (2008). Effects of drying method on the extraction yields and quality of oils from quebec sea buckhtom (Hipphophaerhamnoides L.) seeds and pulp. Food Chemistry, 106: 896 – 904.

17.    Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A. and Golmohamadzadeh, S. (2015). Ultrasonic- assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. Mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173: 577 – 583.

18.    Reichardt, C. and Welton, T. (2011). Solvents and solvent effects in organic chemistry. John Wiley & Sons.

19.    Wijekon, M., Bhat, R. and Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack) inflorescence. Journal of Food Composition and Analysis, 24: 615 – 619.

20.    Conkerton, E. J., Wan, P. J. and Richard, O. A. (1995). Hexane and heptane as extraction solvents for cottonseed: A laboratory-scale study. Journal of American Oil Chemical Society, 72: 963 – 965.

21.    Ryckebosch, E., Myuylaert, K. and Foubert, I. (2012). Optimisation of an analytical procedure for extraction of oils from microalgae. Journal of American Oil Chemical Society, 89: 189 – 198.

22.    Li, Y., Naghdi, F. G., Garg, S., Adarme-Vega, T. C., Thurecht, K. J., Ghafor, W. A., Tannock, S. and Schenk P. M. (2013). A comparative study: the impact of different oil extraction methods on current microalgal oil research. Microbial Cell Factories, 13: 1475 – 2859.

23.    Shen, Y., Pei, Z. J., Yuan, W. Q. and Mao, E. R. (2009). Effect of nitrogen and extraction method on algae oil yield. International Journal of Agriculture and Biology Engineering, 2: 51 – 57.

24.    Suganya, T. and Renganathan, S. (2012). Optimization and kinetic studies on algae oil extraction from marine macroalgae Ulvalactuca. Bioresources Technology, 107: 319 – 326.

25.    Kadi, H. and Fellag, H. (2110). Modeling of oil extraction from olive foot cake using hexane. Grass Aceitas, 52: 369 – 372.

26.    Roop, R. K., Akgerman, A., Dexter, B. J. and Irvin, T. R. (1989). Extraction of phenol from water with supercritical carbon dioxide. Journal of Supercrital Fluids, 2: 51 – 56.

27.    Wang, L., Yang, B., Du, X. and Yi, C. (2008). Optimization of supercritical extraction of flavonoids from Puerarialabota. Food Chemistry. 108: 737 – 741.

28.    Fang, Z., Smith, R. L. and Qi, X. H. (2015). Production of biofuels and chemicals with ultrasound. Journal of Food Engineering, 5: 147 – 148.

29.    Bimakr, M., Abdul Rahman, R., Taip, F. S., Ganjiloo, A., MdSalleh, L., Selamat, J., Hamid, A. and Zaidul, A. S. M. (2011). Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from Spearmint (Menthaspicata L.) leaves. Food and Bioprocess, 89: 67 – 72.

30.    McConnel, B. and Farag, H. I. (2013). Kinetics study of the solvent extraction of lipids from Chlorella vulgaris. International Journal of Engineering and Technical Research, 10: 1 – 10.

 




Previous                    Content                    Next