Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 745 - 753

DOI: https://doi.org/10.17576/mjas-2017-2103-24

 

 

 

O3/S2O82- OXIDATION OF REACTIVE RED 120: EFFECT OF OPERATIONAL PARAMETERS

 

(Pengoksidaan O3/S2O82- Terhadap Reactive Red 120: Kesan Parameter Operasi)

 

Siti Nasuha Sabri, Che Zulzikrami Azner Abidin*, Fahmi Muhammad Ridwan, Ong Soon An, Razi Ahmad,

Kow Su Huan

 

School of Environmental Engineering,

Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: zulzikrami@unimap.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

In this research, the decolourisation performance of Reactive Red 120 (RR120) in aqueous solution using O3/S2O82- was evaluated. RR120 was selected due to high solubility in the aquatic environment. Ozonation (O3) experiments were conducted as a control, to compare the treatment performance after addition of sodium persulphate. The aim of this research is to identify the effect of operational parameters of O3/S2O82- treatment on colour and COD removal. All experiments were carried out under continuous operation in a bubble column reactor. Operational parameters, namely initial dye concentration, S2O82- dosage, initial pH, and contact time, were manipulated to optimize the performance of O3/S2O82-. The effect of parameters on decolourisation performance was identified based on colour and COD removal. The performance of colour and COD removal in the O3 was also compared with O3/S2O82- treatment processes. The intermediates were characterized based on its spectra evolution via UV-Vis spectrophotometer. The findings showed on increases in S2O82- dosage that leads to an increase in the decolourisation efficiency. In addition, when the initial concentration increased to 300 mg/L, the decolourisation efficiency decreases as high concentration of azo bond cause the deficiency of the oxidation process.  The O3/S2O82- performance also improved in alkaline pH, in the presence of hydroxyl radical. By comparing these two treatments, O3/S2O82- obtained better removal efficiency in colour than O3.

 

Keywords:  O3/S2O82-, ozonation, decolourisation, Reactive Red 120, persulphate

 

Abstrak

Dalam kajian ini, prestasi penyingkiran warna O3/S2O82- dinilai terhadap Reactive Red 120 (RR120) dalam larutan akues. RR120 telah dipilih kerana keterlarutan tinggi dalam persekitaran akuatik. Eksperimen pengozonan (O3) telah dijalankan sebagai kawalan, untuk membandingkan prestasi rawatan selepas penambahan natrium persulfat. Tujuan kajian ini adalah untuk mengenal pasti kesan parameter operasi rawatan O3/S2O82- terhadap penyingkiran warna dan COD. Eksperimen ini telah dijalankan di bawah operasi yang berterusan dalam reaktor turus panjang. Parameter operasi, iaitu kepekatan awal pewarna, dos S2O82-, pH awal, dan masa sentuhan, telah dimanipulasikan untuk mengoptimumkan prestasi O3/S2O82-. Kesan parameter terhadap prestasi penyingkiran telah dikenal pasti berdasarkan penyingkiran warna dan COD. Prestasi penyingkiran warna dan COD dalam O3 juga telah dibandingkan dengan proses rawatan O3/S2O82-. Perantaraan daripada RR120 telah dicirikan berdasarkan perubahan spektrum menerusi spektrofotometer UV-Vis. Hasil kajian menunjukkan peningkatan dos O3/S2O82- membawa kepada peningkatan kecekapan penyingkiran warna. Di samping itu, apabila kepekatan awal RR120 meningkat kepada 300 mg/L, kecekapan peyingkiran warna turut berkurangan, kerana kepekatan ikatan azo meningkat menyebabkan proses pengoksidaan berkurangan. Prestasi O3/S2O82-juga bertambah baik pada pH alkali, dengan kehadiran radikal hidroksil. Dengan membandingkan kedua-dua perawatan, didapati O3/S2O82- mempunyai kecekapan penyingkiran warna yang lebih baik daripada O3.

 

Kata kunci:  O3/S2O82-, pengozonan, penyingkiran warna, Reactive Red 120, persulfat

 

 

References

1.       Wang, Z., Xue, M., Huang, K. and Liu, Z. (2010). Textile dyeing wastewater treatment. Intech Open Acess Publisher: pp. 91 – 116.

2.       Muqing, Q., Shou, J., Ren, P. and Jiang, K. (2014). A comparative study of the azo dye reactive Black 5 degradation by UV/TiO2 and photo-fenton processes. Journal of Chemical and Pharmaceutical Research, 6(7): 2046 – 2051.

3.       Rauf, M. A. and Ashraf, S. S. (2009). Application of advanced oxidation processes (AOP) to dye degradation-an overview. In Dyes and Pigments : New Research. Nova Science Publishers. United Arab Emirates: pp. 260 – 290.

4.       Lokesh, K. N. and Kiran, S. R. (2013). Biological methods of dye removal from textile effluents A review. Journal of Biochemical Technology, 3(5): 177 – 180

5.       Smita, V., Quaff, A. R., Pandey, N. D. and Venkatesh, K. (2014). Decolorization and mineralization of C.I. direct Red 28 Azo dye by ozonation. Desalination and Water Treatment, 57(9): 4135 – 4145.

6.       Zhang, F., Yediler, A., Liang, X. and Kettrup, A. (2004). Effects of dye additives on the ozonation process and oxidation by-products: A comparative study using hydrolyzed C.I. Reactive Red 120. Dyes and Pigments, 60(1): 1–7.

7.       Abu Amr, S. S., Aziz, H. A., Adlan, M. N. and Alkasseh, J. M. A. (2014). Effect of ozone and ozone/persulfate processes on biodegradable and soluble characteristics of semiaerobic stabilized leachate. Environmental Progress & Sustainable Energy, 33(1): 184 – 191.

8.       Sigma Aldrich – Reactive Red 120 (2016). Acess online from http://www.sigmaaldrich.com/catalog/product/ sigma/r0378?lang=en&region=MY&gclid=CjwKEAiArfDBRDeyOybg8jd2U4SJAAoE5XqFW4bmf4Mym2M6 _ToAcObcO0TA2yKdAJKJkWtwnxoCybrw_wcB

9.       American Protect Health Agency (2005). Standard methods for the examination of water and wastewater, 21st edition, Washington DC.

10.    Chu, W. and Ma, C. W. (2000). Quantitative prediction of direct and indirect dye ozonation kinetics. Water Research, 34(12): 3153 – 3160.

11.    Soares, O. S. G. P., Orfao, J. J. M., Portela, D., Vieira,  A. and Pereira, M. F. R. (2006). Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 137(3): 1664 – 1673.

12.    Kazemi, M., Jafar, S. S. M., Ali, B. K. and Mohammad, A. K. (2004). Decolourisation of RR-120 dye using ozone and ozone/UV in a semi-batch reactor. The Canadian Journal of Chemical Engineering, 82(6): 1284 – 1288.

13.    Poznyak, T., Tapia, R. and Chairez, I. (2006). Effect of pH to the decomposition of aqueous phenols mixture by ozone. Journal of the Mexican Chemical Society, 50(1): 28 – 35.

14.    Griffini, O. and Iozzelli, P. (1996). The influence of H2O2 in ozonation treatment: experience of the water supply service of Florence, Italy in Ozone Science Engineering. Taylor and Francis: pp. 117 – 126.

15.    Pachhade, K., Sandhaya, S. and Swaminathan, K. (2009). Ozonation of reactive dye, Procion red MX-5B catalyzed by metal ions. Journal of Hazardous Materials, 167(1): 313 – 318.

16.    Feng, W., Nansheng, D. and Helin, H. (2000). Degradation mechanism of azo dye C. I. RG2 by iron powder reduction and photooxidation in aqueos solutions. Chemosphere, 41(8): 1233 – 1238.

17.    Sevimli, M. F. and Sarikaya, H. Z. (2002). Ozone treatment of textile effluents and dyes: Effect of applied ozone dose, pH and dye concentration. Journal of Chemical Technology and Biotechnology, 77(7): 842 –850.

18.    Yang, D. M., Wang, B., Ren, H. Y. and Yuan, J. M. (2012). Effects and mechanism of ozonation for degradation of sodium acetate in aqueous solution. Water Science and Engineering, 5(2): 155 – 163.

19.    Abidin, C. Z. A., Muhammad Ridwan, F. and Ong, S. A. (2015). Decolourization of an azo dye in aqueous solution by ozonation in a semi-batch bubble column reactor. ScienceAsia, 41: 49 – 54.

 




Previous                    Content                    Next