Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 754 - 761

DOI: https://doi.org/10.17576/mjas-2017-2103-25

 

 

 

CELLULOSE NANOCRYSTALS WITH ENHANCED THERMAL STABILITY REINFORCED THERMOPLASTIC POLYURETHANE

 

(Nanokristal Selulosa Dengan Ketahanan Haba Yang Tinggi Berasaskan Poliuretina  Termoplastik)

 

Khairatun Najwa Mohd Amin1*, Pratheep Kumar Annamalai2, Darren Martin2

 

1Faculty of Chemical and Natural Resources Engineering,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

2Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds (Bldg 75),

The University of Queensland, Brisbane QLD 4072 Australia

 

*Corresponding author: knajwa@ump.du.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

Melt compounding processing approach for incorporating cellulose nanocrystals (CNC) into thermoplastic polyurethane (TPU) has not well been explored. This is primarily due to the poor thermal stability and dispersibility of CNCs. As they are typically obtained from sulphuric acid hydrolysis, they give rise to degradation and discolouration of the extruded nanocomposites. The investigation of this research demonstrates sulphuric acid hydrolysis (CNC-S), phosphoric acid hydrolysis (CNC-P) and a novel non-hydrolytic high energy bead milling method (CNC-MC) into a polyether based thermoplastic polyurethane via melt compounding using twin screw extruder. The TPU film incorporated with CNC-S obviously shows the sign of CNC degradation where TPU film was changed to brown colour. The tensile strength of TPU reinforced with CNC-S, CNC-P and CNC-MC shows 18%, 16% and 14% of improvement at CNC loading of 0 to 1 wt.% upon host polymer. CNCs isolated via mild acid hydrolysis and mechanical milling methods, can be easily processed via large scale melt-processing techniques for reinforcing thermoplastic polyurethane without affecting their physical appearance and elastic properties.

 

Keywords:  cellulose nanocrystals, thermoplastic polyurethane, nanocomposites

 

Abstrak

Kajian mengenai penggunaan nanokristal selulosa (CNC) di dalam termoplastik poliuritena (TPU) amat jarang diterokai. Ini adalah kerana CNC mempunyai ketahanan haba yang rendah. CNC yang dihasilkan melalui proses hidrolisis asid sulfurik mudah terdegradasi apabila digabungkan dengan polimer yang melalui proses meramu pencairan umumnya menggunakan suhu pemprosesan yang tinggi. Kajian ini menggunakan CNC yang dihasilkan daripada hidrolisis asid sulfurik (CNC-S), asid fosforik (CNC-P) dan kaedah novel pengisaran manik (CNC-MC) ke dalam poliuretana termoplastik berasaskan berasas polieter melalui proses meramu pencairan. Filem TPU yang digabungkan dengan CNC-S jelas menunjukkan tanda degradasi CNC apabila filem TPU bertukar warna kepada coklat. Kekuatan tegangan TPU diperkukuhkan dengan CNC-S, CNC-P dan CNC-MC menunjukkan 18%, 16% dan 14% peningkatan pada muatan CNC 0-1 wt.% di dalam komposit. CNC yang dihasilkan melalui hidrolisis asid berkekuatan sederhana dan melalui kaedah mekanikal boleh diproses melalui teknik meramu pencairan yang berskala besar dan mampu meningkatkan kekuatan poliuretana termoplastik tanpa menjejaskan penampilan fizikal mereka dan sifat elastiknya.

 

Kata kunci:  nanokristal selulosa, poliuritena termoplastik, nanokomposit

 

References

1.       Barick, A. K., Jung, J. Y., Choi, M. C. and Chang, Y. W. (2013). Thermoplastic vulcanizate nanocomposites based on thermoplastic polyurethane and millable polyurethane blends reinforced with organoclay prepared by melt intercalation technique: Optimization of processing parameters via statistical methods. Journal of Applied Polymer Science, 129 (3): 1405 - 1416.

2.       Koerner H., Liu, W., Alexander, M., Mirau, P., Dowty, H. and Vaia, R. A. (2005). Deformation–morphology correlations in electrically conductive carbon nanotube - thermoplastic polyurethane nanocomposites. Polymer, 46 (12): 4405 - 4420.

3.       Kotal, M., Kuila, T., Srivastava, S. and Bhowmick, A. (2009). Synthesis and characterization of polyurethane/Mg-Al  layered  double  hydroxide  nanocomposites. Journal of Applied Polymer Science, 114 (5): 2691 - 2699.

4.       Barick A. and Tripathy D. (2010). Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Materials Science and Engineering: A, 527(3): 812 - 823.

5.       Liu, H., Liu, D., Yao, F. and Wu, Q. (2010). Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technology, 101(14): 5685 -5692.

6.       Pei, A., Malho, J. M., Ruokolainen, J., Zhou, Q. and Berglund, L. A. (2011). Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules, 44 (11): 4422 - 4427.

7.       Jyoti, J., Basu, S., Singh, B. P. and Dhakate, S., (2015). Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Composites Part B: Engineering, 83: 58 - 65.

8.       Oksman, K., Mathew, A., Bondeson, D. and Kvien, I. (2006). Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66 (15): 2776 - 2784.

9.       Ben Azouz, K., Ramires, E. C., Van den Fonteyne, W., El Kissi, N. and Dufresne, A. (2011). Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Letters, 1(1): 236 - 240.

10.    Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J. and Tyler, D. J. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12): 765 - 769.

11.    Camarero Espinosa, S., Kuhnt, T., Foster, E. J. and Weder, C. (2013). Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules, 14(4): 1223 - 1230.

12.    Amin, K. N. M., Annamalai, P. K., Morrow, I. C. and Martin, D. (2015). Production of cellulose nanocrystals via a scalable mechanical method. RSC Advances, 5(70): 57133 - 57140.

13.    Wang, N., Ding, E. Y., & Cheng, R. S. (2007). Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer, 48(12): 3486 - 3493.

14.    Roman, M. and Winter, W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5(5):1671 - 1677.

15.    Salajkova, M. (2013). Wood nanocellulose materials and effects from surface modification of nanoparticles. Thesis Doctor of Philosophy. KTH Royal Institute of Technology.

16.    Wang N., Ding, E. and Cheng, R. (2007). Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer, 48(12): 3486 - 3493.

17.    Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. and Sheltami, R. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3): 855 - 866.

18.    Favier, V., Chanzy, H. and Cavaille, J. Y. (1995). Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules, 28(18): 6365 - 6367.

19.    Dufresne, A., Cavaillé, J. Y. and Helbert, W. (1997). Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modeling. Polymer Composites, 18(2): 198 -210.

 




Previous                    Content                    Next