Sains Malaysiana 34(2): 67-71 (2005)

 

Sintesis Nanozarah Magnet Ferum (III) Oksida

dengan Kaedah Acuan Mikroemulsi

(Synthesis of Magnetic Nanoparticles of Ferum (III) Oxide

by using Microemulsion System as Template)

 

 

Chiu Wee Siang, Shahidan Radiman, R. Abd. Shukor, M.. H. Abdullah,

Khiew Poi Sim & Huang Nay Ming

Program Sains Nuklear, Pusat Pengajian Fizik Gunaan

Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan Malaysia

 

 

 

ABSTRAK

 

Sintesis nanozarah magnet ferum oksida secara acuan mikroemulsi dijalankan dalam kajian ini. Sistem mikroemulsi yang terdiri daripada esler sukrosa (SE1670S sebagai sutfaktan), heptanol (sebagai ko-sutfaktan), larutan akueus hidrazina hidrat (kepekatan yang berlainan) dan FeCl36H20 (0.5 M) disediakan. Setelah campuran tersebut dihomogenkan, kation Fe3+ akan diturunkan oleh hidrazina hidrat menjadi mendakan ferum dan pertumbuhan nanozarah ini dikawal oleh mikroemulsi yang bertindak sebagai acuan tindakbalas. Nano zarah ferum kemudian dipanaskan pada suhu tinggi untuk membentuk ferum oksida. Pencirian secara kualitatif dan kuantitatif dilakukan melalui teknik mikroskopi elektron transmisi (TEM), analisis penyebaran tenaga sinar-X (EDAX) dan kajian magnetometer (VSM). Menurut mikrograf TEM, nanozarah ferum oksida ini mempamerkan morfologi yang berlainan apabila kepekatan hidrazina hidrat diubah. Analisis penyebaran tenaga sinar-X menunjukkan bahawa nisbah Fe kepada 0 ialah 1.48. Ini menunjukkan bahawa ia sepadan dengan formula empirik Fe2O3. Lengkung histerisis yang diperolehi melalui kajian magnetometer (VSM) mempamerkan ciri ferimagnet dengan nilai pemagnetan tepu 0.3 emu/g pada 300K.

 

Kata kunci: nanozarah magnet, ferum (III) oksida, mikroemulsi, acuan, ester sukrosa

 

 

ABSTRACT

 

Synthesis of magnetic nanoparticles iron oxide was conducted using the single microemulsion method. The microemulsion system consists of sucrose ester (SE1670S as the sutfactant), heptanol (as co-sutfactant), aqueous hydrazine hydrate (different concentration) and FeCl36H20 was prepared. After the solutions have been homogenized, cations Fe3+ were reduced to precipitation of iron nanoparticles and this growing process was controlled by microemulsion which acts as template for chemical reaction. Iron nanoparticles were calcined at high temperature in order to form the iron oxide nanomaterials. The characterization technique includes transmission electron microscopy (TEM), energy dispersive X­-ray analysis (EDAX) and vibrating sample magnetometer (VSM). From TEM micrograph iron oxide with different morphology was produced corresponding to difference concentration of hydrazine hydrate. From the spectrum of EDAX, the empirical formula of iron oxide was 1.48 (almost equal to value of empiric formula of Fe2O) Also, the hysterisis loop obtained from magnetometer (VSM) show that sample posses ferrimagnetic property with saturation magnetization 0.3 emu/g at 300 K.

 

Keywords: magnetic nanoparticules, iron (III) oxide, microemulsion, template, sucrose ester

 

 

RUJUKAN/REFERENCES

 

Chatterjee, J., Haik, Y. & Chen, C..J. 2002. Size dependent magnetic properties of iron oxide nanoparticles. J. Magnetism and Magnetic Materials 257: 113-118.

Deng, Y., Wang, L., Yang, W., Fu, S. & Elaissari, A. 2002. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magnetism and Magnetic Materials 257: 69-78.

Jolivet, J.-P., Tronc, E. & Chaneac, C. 2002. Synthesis of iron oxide-based magnetic nanomaterials and composites. Proc. Synthetic Stragies for New Spin Topologies 5: 659-664.

Klabunde, K. J. 2001. Nanoscale materials in chemistry. USA: John Wiley & Sons, Inc.

Lacava, L. M., Lacava, Z. G. M., Azevedo, R. B., Chaves, S. B., Garcia, V. A. P., Silva, 0., Pelegrini, E, Buske, N., Gansau, C., Da-Silva, M. E & Morais, P. C. 2002. Use of magnetic resonance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice. J. Magnetism and Magnetic Materials 252: 367-369.

Mendoza-Resendez, R, Morales, M. P. & Serna, C. J. 2003. Reduction mechanism of uniform iron oxide nanoparticles to metal used as recording media. J. Materials Science & Engineering 23: 1139-1142.

Ni, X., Su, X., Yang, Z. & Zheng, H. 2003. The preparation of nickel nanorods in water-in-oil microemulsion. J. Crystal Growth 252: 612-617.

Pillai, V. & Shah, D. O. 1996. Synthesis ofhigh-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magnetism and Magnetic Materials 163: 243-248.

Santini, O., Mosca, D. H., Schreiner, W. H., Marangoni, R, Guimaraes, J. L., Wypych, E, Olivera, A. J. A. 2003. Microstructure and magnetism of Fe nanoparticles embedded in Al2O3-ZnO matrix. J. Physics D: Applied Physics 36: 428­433.

Wang, C., Fang, J., He, J. & Connor, C. J. O. .2003. Synthesis of one-dimensional magnetic Co nanoparticles in a novel solution system. J. Colloid and Interface Science 259: 411­413.

William, D.C.J. 2003. Material science and engineering an introduction. Edisi ke-6. USA: John Wiley & Sons, Inc.

 

 

 

previous