Sains Malaysiana 38(2): 227-231(2009)
New Parallel R-Point
Explicit Block Method For Solving Linear High- Order Ordinary Differential
Equations Directly
(Kaedah
baru R-titik blok selari tak tersirat bagi menyelesaikan persamaan
pembeza
biasa linear peringkat tinggi secara langsung)
Zurni bin Omar
College of Arts and Sciences, Universiti Utara
Malaysia
06010 UUM, Sintok, Kedah, Malaysia
Mohamed bin Suleiman
Department of Mathematics, Universiti Putra Malaysia
43400 Serdang, Selangor, Malaysia
Received: 23 April 2008 / Accepted: 8 Ogos 2008
ABSTRACT
A new method called parallel R-point explicit block
method for solving a single equation of higher order ordinary differential
equation directly using a constant step size is developed. This method calculates the numerical solution
at R point simultaneously is parallel in nature. Computational advantages are presented by comparing
the results obtained with the new method with that of the conventional 1-point
method. The numerical results show that
the new method reduces the total number of steps and execution time. The accuracy of the parallel block and the
conventional 1-point methods is comparable particularly when finer step sizes
are used.
Keywords: High-order ordinary differential equations; parallel
R-point explicit block method
ABSTRAK
Satu
kaedah baru R-titik blok selari tak tersirat bagi menyelesaikan persamaan
pembeza biasa peringkat tinggi secara langsung dengan menggunakan saiz langkah malar dibangunkan. Kaedah selari ini
menghitung penyelesaian berangka pada R titik serentak. Kelebihan pengiraan
dipersembahkan dengan membandingkan keputusan yang diperolehi daripada kaedah
baru dengan kaedah lazim 1-titik. Keputusan berangka menunjukkan kaedah baru
mengurangkan jumlah bilangan langkah dan masa pengiraan. Ketepatan kaedah blok
selari dan kaedah lazim 1-titik boleh dibandingkan terutamanya bila saiz
langkah yang digunakan adalah kecil.
Kata kunci: Kaedah R-titik blok selari tak tersirat; persamaan pembeza biasa
peringkat tinggi
REFERENCES
Birta L.G. & Abou-Rabia O. 1987. Parallel Block
Predictor-Corrector Methods for ODEs, IEEE
Transactions on Computers C-36(3): 299-311.
Chu M.T. & Hamilton
H. 1987. Parallel Solution of ODEs by Multi-Block Methods, Siam J. Sci. Stat. Comput.8(1):
342-353.
Gear,
C.W. 1966. The Numerical Integration of Ordinary
Differential Equations. Math. Comp. 21: 146-156.
Gear,
C.W. 1971. Numerical
Initial Value Problems in Ordinary Differential Equations. New Jersey: Prentice Hall, Inc.
Gear,
C.W. 1978. The Stability of Numerical Methods for
Second-Order Ordinary Differential Equations. SIAM J. Numer. Anal. 15(1):
118-197.
Hall, G. & Suleiman, M.B. 1981. Stability of Adams-Type
Formulae for Second-Order Ordinary Differential Equations. IMA J. Numer. Anal. 1:
427-428.
Krogh,
F.T. 1968. A Variable Step, Variable Order Multistep Method for the Numerical
Solution of Ordinary Differential Equation. Proceedings of the IFIP Congress in Information Processing 68: 194-199.
Omar, Z.B & Suleiman, M.B.
1999. New Parallel 3-Point Explicit Block Method for Solving Second Order
Ordinary Differential Equations (ODEs) Directly. Jurnal ANALISIS 6(1&2):
61-74.
Omar, Z.B., Suleiman, M.B.,
Saman, M.Y. & Evans, D.J. 2002. Parallel R-point Explicit Block Method for
Solving Second Order Ordinary Differential Equations Directly. International Journal of Computer
Mathematics 9: 289-298.
Russel,
R.D. & Shampine, L.F. 1972. A Collocation Method for Boundary Value
Problems. Num. Math 19: 1-28.
Shampine
L.F. & Watts H.A. 1969. Block implicit one-step methods, Math. Comp.23:731-740.
Suleiman,
M.B. 1979. Generalised Muiltistep Adams and Backward
Differentiation Methods for the Solution of Stiff and Non-Stiff Ordinary
Differential Equations. PhD Thesis. University of Manchester.
Suleiman,
M.B. 1989. Solving Higher Order ODEs Directly by the
Direct Integration Method. Applied
Mathematics and Computation 33(3): 197-219.
|