Sains Malaysiana 40(5)(2011): 503–509
Kesan Masa Pengeraman Nanozarah Zink Oksida yang Dihasilkan Menggunakan Afrons Gas Koloid
(Incubation Effect
on Zinc Oxide Nanoparticles Produced Using Colloidal
Gas Aphrons)
Saifful Kamaluddin Muzakir*
Fakulti Sains & Teknologi Industri, Universiti Malaysia
Pahang, Lebuhraya Tun Razak
26300 Gambang, Kuantan,
Pahang, Malaysia
Shahidan Radiman
Pusat Pengajian Fizik Gunaan, Universiti Kebangsaan Malaysia
43600 UKM Bangi,
Selangor D.E., Malaysia
Received: 12 March 2010 / Accepted: 7 July 2010
ABSTRAK
Nanozarah zink oksida telah disintesis menggunakan afrons gas koloid sebagai acuan. Zink sulfat (ZnSO4.7H2O) dan gas ammonia digunakan sebagi bahan tindak balas. Masa pengeraman yang dikaji adalah 2 jam dan 18 jam. Daripada analisis mikroskop elektron imbasan, morfologi nanohelaian dapat diperhatikan dengan ketebalan helaian 125 nm hingga 200 nm. Daripada analisis spektroskopi ultra lembayung-boleh nampak, saiz purata yang dianggarkan bagi sampel nanozarah zink oksida yang disintesis dengan masa pengeraman 2 jam adalah 2.03 nm dan 2.1 nm untuk sampel yang dieramkan selama 18 jam.
Kata kunci: Afrons gas koloid; kesan masa pengeraman; nano ZnO; semikonduktor
ABSTRACT
Zinc
oxide nanoparticles has been synthesized using colloidal gas aphrons as
template. Zinc sulfate (ZnSO4.7H2O)
and ammonia gas used as reactants. The incubation periods that have been
studied are 2 h and 18 h. From the scanning electron microscope analysis, nanosheet morphology can be observed with thickness of 125
nm to 200 nm. From the UV-Vis spectroscopy analysis, the estimated average size
for zinc oxide nanoparticles with 2 h incubation time
is 2:03 nm and 2.1 nm for 18 h of incubation time.
Keywords: Colloidal
gas aphrons; incubation effect; nano ZnO; semiconductor
REFERENCES
Bagnall,
D.M., Chen, Y.F. & Zhu, Z. 1998. High temperature excitonic stimulated emission from ZnO epitaxial layers. Applied Physics Letters 73: 1038-3917.
Brus, L.E. 1984. Electron-electron and
electron-hole interactions in small semiconductor crystallites: the size
dependence of the lowest excited electronic state. Journal of Chemical
Physics 80: 4403-4409.
Champalkar,
P.G., Valsaraj, K.T. & Roy, D. 1993. Xanthan precipitation from solutions and fermentation broths. Separation
Science and Technology 28: 1303-1313.
Dai, Y. & Deng, T. 2003. Stabilization and characterization of colloidal gas aphron dispersions. Journal of Colloid and
Interface Science 261: 360-365.
Hensirisak, P. 1997. Scale-up the
use of microbubble dispersion to increase oxygen
transfer in aerobic fermentation of baker’s yeast. M.Sc. Thesis. Virginia Polytechnic Institute and State University.
Jarudilokkul,
S. & Rungphetcharat, K. 2004. Protein separation by colloidal gas aphrons using nonionic surfactant. Separation and Purification Technology 35:
23-29.
Jauregi,
P. & Varley, J. 1999. Colloidal gas aphrons: potential applications in
biotechnology. Tibtech 17:389- 395.
Kommalapati, R.R.
& Valsaraj, K.T. 1998. Soil flushing using
colloidal gas aphron suspensions generated from a
plant-based surfactant. Journal of Hazardous Materials 60: 73-87.
Li,
C. & Xiyu, S. 2002. Quantum
confinement effect of ZnO nano-particles. Chemistry Magazine 4: 45-50.
Phelan, R., Weaire, D., Peters, E. A.
J. F. & Verbists, G. 1996. The conductivity of a foam. Journal of Physics:
Condensed Matter 8: 475- 482.
Sebba, F. 1985. An
improved generator for micron-sized bubbles. Chemistry and Industry 4:
91-96.
Wang, Z.L. 2004. Nanostructure
of zinc oxide. Materials Today 7: 18-23.
Winter,
M. 2003. Chemistry: Periodic table: Binding energy data. (atas talian). http://www.webelements.com/webelements/element.html (5
September 2004).
*Corresponding
author; email: saifful@ump.edu.my
|