Sains Malaysiana 40(5)(2011): 497–502
Characterisation of Simple Sequence Repeats in the Asian
Seabass, Lates calcarifer by Random Sequencing
(Pencirian Ulangan
Jujukan Ringkas dalam Ikan Siakap, Lates calcarifer melalui Penjujukan
Rawak)
Pan-Pan Chong, AduraMohd. Adnan
& Kiew-Lian Wan*
School of Biosciences and Biotechnology, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia
Malaysia Genome Institute, Heliks Emas Block, UKM-MTDC
Technology Centre
Unversiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia
Received: 1 June 2010 / Accepted: 27 July 2010
ABSTRACT
In recent years, there has
been considerable interest in simple sequence repeats (SSRs)
particularly as molecular markers with applications in many different fields.
We have carried out an effort to identify and analyse SSRs
in the genome of the Asian seabass, Lates calcarifer by random sequencing.
Genomic DNA was isolated from the muscle tissue of L. calcarifer, sheared by nebulisation and ligated into plasmid vector.
Recombinant clones were selected randomly from the genomic libraries
constructed. Subsequently, plasmid DNA was extracted and subjected
to one-pass sequencing. A total of 4175 random sequences, also known as genome
survey sequences (GSSs), with a total length of 1.7 Mb
was generated. Screening of the whole L. calcarifer GSS data
set allowed for the identification of a total of 151 perfect (100% similarity) SSRs.
These SSR consensus patterns spread over a wide range of size
(1 to 226 bp). The most frequent consensus pattern is dinucleotide, which
represents 60% of all SSRs identified. The dinucleotides (AC)n,
(AT)n and
(AG)n were
also found to occur frequently in the L. calcarifer genome. Sequence
comparison between L. calcarifer and other fish species showed variation
in repeat content, indicating the different ways in which repeats may evolve in
the genome of these species. Data generated from this random sequencing of the L.
calcarifer genome should serve as a valuable resource for further studies of
this organism.
Keywords: Genome survey
sequence; GSS; molecular marker; SSR
ABSTRAK
Sejak kebelakangan ini,
terdapat minat yang mendalam mengenai ulangan jujukan ringkas (SSR),
terutamanya sebagai penanda molekul dengan kegunaan dalam pelbagai bidang. Kami
telah melaksanakan usaha untuk mengenal pasti dan menganalisis SSR dalam
genom ikan siakap, Lates calcarifer melalui penjujukan rawak. DNA genom
telah dipencilkan daripada tisu otot L. calcarifer, diserpihkan dengan
nebulisasi dan diligasikan ke dalam vektor plasmid. Klon rekombinan telah
dipilih secara rawak daripada perpustakaan genom yang telah dibina. Seterusnya, DNA plasmid telah diekstrak dan diperlakukan penjujukan sekali lalu.
Sejumlah 4175 jujukan rawak, yang juga dikenali sebagai jujukan tinjauan genom
(GSS),
dengan jumlah panjang 1.7 Mb telah dijana. Penabiran keseluruhan set data GSS L.
calcarifer telah membolehkan pengenalpastian sejumlah 151 SSR sempurna
(persamaan 100%). Corak konsensus SSR ini tersebar merentasi
julat saiz yang luas (1 hingga 226 pb). Corak konsensus yang paling sering
ditemui adalah dinukleotida, yang mewakili 60% daripada kesemua SSR yang
dikenal pasti. Dinukleotida (AC)n, (AT)n dan
(AG)n juga
dijumpai hadir dengan banyak dalam genom L. calcarifer. Perbandingan
jujukan di antara L. calcarifer dengan spesies ikan lain mempamerkan
variasi dalam kandungan ulangan, dan ini menunjukkan cara berbeza bagaimana
ulangan berupaya berevolusi dalam genom spesies ini. Data yang terjana daripada
penjujukan rawak genom L. calcarifer ini merupakan sumber yang berharga
untuk kajian lanjut tentang organisma ini.
Kata kunci: GSS; jujukan tinjauan genom; penanda molekul; SSR
REFERENCES
Arzimanoglou,
I.I., Gilbert, F. & Barber, H.R.K.
1998. Microsatellite instability in human solid tumors. Cancer 82:
1808-1820.
Benson,
G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucl.
Acids Res. 27: 573-580.
Chong,
P.-P., Mohd-Adnan, A. & Wan, K.-L. 2005.
Construction and characterisation of a genomic library for seabass Lates
calcarifer. Sains Malaysiana 34: 26-32.
Chou,
R. & Lee, H.B. 1997. Commercial marine fish farming in Singapore. Aquacult.
Res. 28: 767-776.
Crollius, H.R., Jailon, O., Dasilva,
C., Ozouf-Costaz, C., Fizames, C., Fischer, C., Bouneau, L.,
Billault, A., Quetier, F., Saurin, W.,
Bernot, A. & Weissenbach, J. 2000. Characterization and repeat analysis of the
compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome
Res. 10: 939-949.
Estoup,
A., Rousset, F., Michalakis, Y., Cornuet, J.M., Adriamanga, M. & Guyomard,
R. 1998. Comparative analysis of microsatellite and allozyme markers: A case
study investigating microgeographic differentiation in brown trout Salmo
trutta L. Mol. Ecol. 7: 339-340.
Ewing, B. & Green, P. 1998.
Base-calling of automated sequencer traces using phred. II. Error
probabilities. Genome Res. 8: 186-194.
Ewing,
B., Hillier,
L., Wendy,
M.C. & Green,
P. 1998. Base-calling of automated sequencer traces using phred. I.
Accuracy assessment. Genome Res. 8: 176-185.
Field, D. & Wills, C. 1996.
Long, polymorphic microsatellites in simple organisms. Proc. R. Soc. Lond. 263:
209-215.
Gacy, A.M., Goellner, G., Juranic, N., Macura, S. &
Mcmurray, C.T. 1995. Trinucleotide repeats that expand in human disease form
hairpin structures in vitro. Cell 81: 533-540.
Green, P. 1996. Crossmatch.
[http://bozeman.mbt.washington.edu/phrap.docs/general.html]
Hancock, J.M. 1996.
Simple sequences in a ‘minimal’ genome. Nat. Genet. 14: 14-15.
Jackson, T.R.,
Martin-Robichaud, D.J. & Reith, M.E. 2003. Application of DNA markers to the
management of Atlantic halibut (Hippoglossus hippoglossus) broodstock. Aquaculture 220: 245-259.
Moore, H., Greenwell, P.W., Liu, C.P.,
Arnheim, N. & Petes, T.D. 1999. Triplet
repeats form secondary structures that escape DNA repair in yeast. Proc.
Natl. Acad. Sci. USA 96: 1504-1509.
Neff, B.D. & Gross, M.R. 2001.
Microsatellite evolution in vertebrates: Inference from AC dinucleotide
repeats. Evolution 55: 1717-1733.
Mohd-Yusof, N.-Y., Hoh, C.-C.,
Mohd-Adnan, A. & Wan, K.-L. 2009. Identification of immune-related genes by
analysis of spleen expressed sequence tags from the Asian seabass, Lates calcarife.
Sains Malaysiana 38(6): 939-945.
Oliver, J.L. &
Marin, A. 1996. A relationship between GC content and coding-sequence length. J. Mol. Evol. 43:
216-223.
Postlethwait, J.H., Johnson, S.L.,
Midson, C.N., Talbot, W.S., Gates, M.,
Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., Horne, S., Kimmel, C.B., Hutchinson, M., Johnson, M. & Rodrigues, A. 1994. A genetic
linkage map of the zebrafish. Science 126: 699-703.
Reddy, P.S. &
Housman, D.E. 1997. The complex pathology of trinucleotide repeats. Curr.
Opin. Cell Biol. 9: 364-372.
Schoreeret, D.F. & Gartlar, S.M. 1992.
Analysis of CpGsuppression in methylated and nonmethylated species. Proc.
Natl. Acad. Sci. U.S.A. 89: 957-961.
Tanaka, M. 1995.
Characteristics of medaka genes and their promoter regions. Fish Biol. J.
Medaka 7: 11-14.
Tan, S.-L.,
Mohd-Adnan, A., Mohd-Yusof, N.Y., Forstner, M.R.J. & Wan, K.-L. 2008. Identification and
analysis of a prepro-chicken gonadotropin releasing hormone II (preprocGnRH-II)
precursor in the Asian seabass, Lates calcarifer, based on an EST-based
assessment of its brain transcriptome. Gene 411: 77-86.
Tautz, D. 1989. Hypervariability of
simple sequences as a general source for polymorphic DNA markers. Nucl.
Acids Res. 17: 6463-6471.
Toth, G., Gaspari, Z. &
Jurka, J. 2000. Microsatellites in different eukaryotic genomes: survey and
analysis. Genome Res. 10: 967-981.
Watanabe, T.,
Fujita, H., Yamasaki, K.,
Seki, S. & Taniguchi, N. 2004. Preliminary study on linkage mapping based
on microsatellite DNA and AFLP markers using homozygous clonal fish in ayu (Plecoglossus
altivelis). Mar. Biotechnol. 6: 327-334.
Wright, J.M. &
Bentzen, P. 1994. Microsatellites: genetic markers for the future. Rev. Fish
Biol. Fish. 4:
*Corresponding
author: email: klwan@ukm.my
|