Sains Malaysiana 40(5)(2011): 521–525
A Robust Test Based on Bootstrapping for
the Two-Sample Scale Problem
(Suatu Ujian Teguh
Berdasarkan Kaedah Butstrap untuk Masalah Skala bagi Dua-Sampel)
A.R. Padmanabhan1,2, Abdul Rahman Othman1,3 & Teh Sin Yin1,4*
1Robust Statistics Computational Laboratory, School of Distance
Education
Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
2Monash University, Clayton, Victoria 3800, Australia
3Institute of Postgraduate Studies, Universiti Sains Malaysia
11800 Minden, Penang, Malaysia
4School of Mathematical Sciences, Universiti Sains Malaysia
11800 Minden, Penang, Malaysia
Received: 22 March 2010 / Accepted: 1 October 2010
ABSTRACT
For testing the
homogeneity of variances, modifications of well-known tests are known which
combine rigorous theory with resampling (bootstrap). We propose versions of
these tests, which are computationally simpler (although asymptotically
equivalent). The earlier procedures used the smooth bootstrap with two thousand
bootstrap replications per sample whereas our proposals use only the classical
bootstrap (or percentile method) with just one thousand bootstrap replications
per sample, and also required much less computing time. Our proposals cover the
Ansari-Bradley-, Mood- and Klotz-tests. We explain their superiority over the
existing methodologies available in textbooks and packages.
Keywords: Ansari-Bradley;
Bootstrap; Klotz; Mood; test of scale
ABSTRAK
Pada umumnya,
pengubahsuaian ujian-ujian terkenal yang menggabungkan teori rapi dengan
pensampelan semula (kaedah butstrap) digunakan untuk mengkaji kesamaan varians.
Kami mencadangkan versi ujian yang lebih mudah daripada segi pengiraan
(meskipun ia setara secara asimtotik). Prosedur yang sebelum ini menggunakan
kaedah butstrap licin dengan dua ribu replikasi butstrap setiap sampel. Kami
pula mengusulkan penggunaan kaedah butstrap klasik (atau kaedah persentil)
dengan hanya seribu replikasi butstrap setiap sampel. Maka masa pengiraan juga
jauh lebih singkat. Usul kami merangkumi ujian Ansari-Bradley, Mood dan Klotz.
Kami menjelaskan keunggulan ujian-ujian tersebut berbanding dengan kaedah yang
tersedia dalam buku teks dan pakej perisian di pasaran.
Kata kunci:
Ansari-Bradley; kaedah Butstrap; Klotz; Mood; ujian skala
REFERENCES
Ansari,
A.R. & Bradley, R.A. 1960. Rank-sum tests for dispersions. Ann. Math.
Stat. 31: 1174-1189.
Bethea,
R.M., Duran, B.S. & Boullion, T.L. 1975. Statistical Methods for Engineers
and Scientists. New York: Marcel-Dekker.
Conover,
W.J., Johnson, M.E. & Johnson, M.M. 1981. A comparative study of tests for
homogeneity of variances, with applications to the outer continental shelf
bidding data. Technometrics 23: 351-361.
Fligner,
M.A. & Hettmansperger, T.P. 1979. On the use of conditional asymptotic
normality. J. Roy. Statistical Society Ser. B 41: 178-183.
Fligner,
M.A. & Killen, T.J. 1976. Distribution-free two-sample tests for scale. J.
Amer. Statistical Assoc. 71: 210-213.
Hald,
A. 1967. Theory with Engineering Applications. (7th ed.).
New York: Wiley.
Hall,
P. & Padmanabhan, A.R. 1997. Adaptive inference for the two-sample scale
problem. Technometrics 39(4): 412-422.
Keselman,
H.J., Kowalchuk, R.K. & Lix, L.M. 1998a. Robust nonorthogonal analyses
revisited: An update based on trimmed means. Psychometrika 63: 145–163.
Keselman,
H.J., Lix, L.M. & Kowalchuk, R.K. 1998b. Multiple comparison procedures for
trimmed means. Psychol. Methods 3(1): 123-141.
Keselman,
H.J., Othman, A.R., Wilcox, R.R. & Fradette, K. 2004. The new and improved
two-sample t-test. Psychol. Science 15: 47-51.
Keselman,
H.J., Wilcox, R.R., Lix, L.M., Algina, J. & Fradette, K. 2007. Adaptive
robust estimation and testing. British J. Math. Statist. Psych. 60:
267-293.
Klotz,
J. 1962. Nonparametric tests for scale. Ann. Math. Stat. 32: 498-512.
Mendenhall,
W., Wackerly, D.D. & Schaeffer, R.L. 1990. Mathematical Statistics with
Applications. (4th ed.). Boston: PWS-Kent.
Mood,
A. 1954. On the asymptotic efficiency of certain non-parametric tests. Ann.
Math. Stat. 25: 514-522.
Nair,
V.N. 1984. On the behavior of some estimators from probability plots. J.
Amer. Statistical Assoc. 79: 823-830.
Othman,
A.R., Keselman, H.J., Wilcox, R.R., Fradette, K. & Padmanabhan, A.R. 2002.
A test of symmetry. J. Mod. Appl. Stat. Meth. 2: 310-315.
Siegel,
S. & Tukey, J.W. 1960. A nonparametric sum of ranks procedure for relative
spread in unpaired samples. Journal of American Statistical Association 55(291):
429-445.
Steland,
A., Padmanabhan, P. & Akram, M. 2007. Resampling Methods for the
Nonparametric and Generalized Behrens-Fisher Problem. Sankhya Ser. A
(accepted).
*Corresponding
author; email: syin.teh@gmail.com
|