Sains Malaysiana 40(5)(2011): 527–535
Pemetaan Kes Kemortalan Bayi di Semenanjung Malaysia
Menggunakan Kaedah Bayes Empirik
(Mapping of Infant
Mortality Cases in Peninsular Malaysia using Empirical Bayes Method)
Nuzlinda Abdul Rahman*
Pusat Pengajian Sains Matematik Universiti Sains Malaysia, 11800 USM,
Penang, Malaysia
Abdul
Aziz Jemain, Kamarulzaman Ibrahim& Ahmad Mahir Razali
Pusat
Pengajian Sains Matematik, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Received:
22 December / Accepted: 20 May 2010
ABSTRAK
Kajian ini bertujuan untuk
memetakan kes kemortalan bayi mengikut daerah di Semenanjung Malaysia bagi
tahun 1991 hingga 2000. Penganggaran risiko relatif berdasarkan kaedah Bayes
empirik telah digunakan dalam kajian ini. Tiga kaedah penganggaran parameter
dihuraikan iaitu kaedah momen, kaedah kebolehjadian maksimum dan kaedah
penganggaran gabungan momen dan kebolehjadian maksimum. Keteguhan anggaran
parameter yang diperoleh diuji menggunakan kaedah Bootstrap. Hasil kajian
mendapati jurang antara kawasan berisiko rendah dengan kawasan berisiko tinggi
adalah lebih besar pada awal dekad 2000 berbanding pada awal dekad 1990-an
walaupun pada dasarnya kadar mortaliti bayi secara keseluruhannya adalah
semakin berkurangan pada peringkat nasional. Kawasan pantai timur Semenanjung
Malaysia masih pada takuk yang sama iaitu masih berada dalam kategori berisiko
tinggi sepanjang tempoh yang dikaji. Seterusnya, gambaran terdapatnya tompokan
risiko juga turut terpapar dalam peta yang dihasilkan. Berdasarkan kaedah Bootstrap,
parameter-parameter yang dianggarkan dalam kajian ini adalah teguh.
Kata kunci: Bootstrap;
kaedah Bayes empirik; kemortalan bayi; risiko relative
ABSTRACT
The objective of this
study was to map the infant mortality cases over Peninsular Malaysia by
district for the period of 1991 to 2000. Relative risks estimation based on
empirical Bayes method was used in this study. Three methods of estimation were
described which include moment method, maximum likelihood method and
combination of moment and maximum likelihood method. The robustness of the
parameters estimation was examined using Bootstrap method. The study indicated
that the gap between the low risk areas and the high risk areas are larger in
the early decade of 2000 compared to the early 1990s eventhough the infant
mortality rate is declining at the national level. The east coast areas of the
Peninsular Malaysia still remain in the high risk category over the period of
the study. Moreover, the maps obtained indicated the occurrence of clustering
effect in the infant mortality risk. Based on the Bootstrap method, all
parameters estimation obtained in this study were robust.
Keywords:
Bootstrap; empirical bayes method; infant mortality; relative risk
REFERENCES
Ainsworth,
L.M. & Dean, C.B. 2006. Approximate inference for disease mapping. Computational
Statistics & Data Analysis 50: 2552-2570.
Berke,
O. 2005. Exploratory spatial relative risk mapping. Preventive Veterinary
Medicine 71: 173-182.
Biggeri,
A., Dreassi, E., Lagazio, C. & Bohning, D. 2003. A transitional
non-parametric maximum pseudo-likelihood estimator for disease mapping. Computational
Statistics & Data Analysis 41: 617-629.
Bohning,
D. 1995. A review of reliable maximum likelihood algorithms for semiparametric
mixture models. Journal of Statistical Planning and Inference 47: 5-28.
Bohning,
D., Dietz, E. & Schlattmann, P. 1998. Recent developments in
computer-assisted analysis of mixture. Biometrics 54: 525-536.
Bohning,
D., Schlattmann, P. & Lindsay, B. 1992. Computer-assisted analysis of
mixtures (C.A.MAN): Statistical algorithms. Biometrics 48: 283-303.
Cano-Serral,
G., Azlor, E., Rodriguez-Sanz, M., Pasarin, M.I., Martinez, J.M., Puigpinos,
R., Muntaner, C. & Borrel, C. 2009. Socioeconomic inequalities in mortality
in Barcelona: A study based on census tract (MEDEA Project). Health &
Place 15(1): 186-192.
Chandrasekaran,
S.K. & Arivarignan, G. 2006. Disease mapping using mixture distribution. Indian
Journal of Medical Research 123(6): 788-798.
Clayton,
D. & Kaldor, J. 1987. Empirical Bayes estimates of age-standardized
relative risks for use in disease mapping. Biometrics 43: 671-681.
Hasselblad,
V. 1969. Estimation of finite mixtures of distributions from the exponential
family. Journal of the American Statistical Association 64: 1459-1471.
Jabatan
Perangkaan Malaysia. 1991. Perangkaan Penting Malaysia.
Jabatan
Perangkaan Malaysia. 2000. Perangkaan Penting Malaysia.
Kaluzny,
S.P., Vega, S.C., Cardoso, T.P. & Shelly, A.A. 1998. S+ Spatial Stats
User’s manual for Windows and UNIX. New York: Springer.
Koch,
T. & Denike, K. 2001. GIS approaches to the problem of disease clusters: a
brief commentary. Social Science & Medicine 52: 1751-1754.
Kraak,
M.J. & Ormeling, F.J. 1996. Cartography: Visualization of spatial data.
England: Longman.
Lawson,
A.B. & Williams, F.L.R. 2001. An Introductory Guide to Disease Mapping.
Chichester: John Wiley & Sons.
Lawson,
A.B., Browne, W.J. & Rodeiro, C.L.V. 2003. Disease Mapping with WinBUGS
and MlwiN. New York: Wiley.
Marshall,
R.J. 1991. Mapping disease and mortality rates using empirical Bayes
estimators. Applied Statistics 40: 283-294.
Meza,
J.L. 2003. Empirical Bayes estimation smoothing of relative risks in disease
mapping. Journal of Statistical Planning and Inference 112: 43-62.
Monmonier,
M. 1993. Mapping it Out. Chicago: The University of Chicago Press.
Ng,
S. & McLachlan, G.J. 2004. Speeding up the EM algorithm for mixture
model-based segmentation of magnetic resonance images. Pattern Recognition 37:
1573-1589.
Rattanasiri,
S., Bohning, D., Rojanavipart, P. & Athipanyakom, S. 2004. A mixture model
application in disease mapping of malaria. Southeast Asian Journal Trop.
Med. Public. Health 35: 38-47.
Robbins,
H. 1964. The empirical Bayes approach to statistical decision problems. Annals
of Mathematical Statistics 35: 1-20.
Schlattmann,
P. & Bohning, D. 1993. Mixture models and disease mapping. Statistics in
Medicine 12: 1943-1950.
Schlattmann,
P., Dietz, E. & Bohning, D. 1996. Covariate adjusted mixture models and
disease mapping ith the program Dismapwin. Statistics in Medicine 12:
919-929.
Schroder,
W. 2006. GIS, geostatistics, metadata banking and tree-based models for data
analysis and mapping in environmental monitoring and epidemiology. International
Journal of Medical Microbiology 296: 23-36.
Slocum,
T.A. 1999. Thematic Cartography and Visualization. Upper Saddle River,
NJ: Prentice Hall.
Staubach,
C., Schmid, V., Knorr-Held, L. & Ziller, M. 2002. A Bayesian model for
spatial wildlife disease prevalence data. Preventive Veterinary Medicine 56:
75-87.
Tsutakawa,
R.K. 1985. Estimation of cancer mortality rates: A Bayesian analysis of small
frequencies. Biometrics 41: 69-79.
United
Nations. 1986. Economic and Social Survey of Asia and the Pacific. New
York: United Nations.
United
Nations. 2002. Economic and Social Survey of Asia and the Pacific. New
York: United Nations.
Waller,
L.A. & Gotway, C.A. 2004. Applied Spatial Statistics for Public Health
Data. New Jersey: John Wiley & Sons.
*Corresponding
author; email: nuzlinda@usm.my
|