Sains Malaysiana 40(8)(2011): 927–935
Tail Dependence Estimate in Financial Market Risk
Management: Clayton-Gumbel Copula Approach
(Nilai Kebersandaran
Ekor Bagi Anggaran Dalam Pengurusan Risiko Pasaran Kewangan: Pendekatan
Clayton-Gumbel Copula)
A.
Ahmed
Shamiri*, N.A. Hamzah & A. Pirmoradian
Institute of
Mathematical Sciences, Faculty of Science, Univeristy of Malaya
50603 Kuala
Lumpur, Malaysia
Received: 20 May
2010 /Accepted: 10 November 2010
ABSTRACT
This paper focuses on
measuring risk due to extreme events going beyond the multivariate normal
distribution of joint returns. The concept of tail dependence has been found
useful as a tool to describe dependence between extreme data in finance.
Specifically, we adopted a multivariate Copula-EGARCH approach
in order to investigate the presence of conditional dependence between
international financial markets. In addition, we proposed a mixed
Clayton-Gumbel copula with estimators for measuring both, the upper and lower
tail dependence. The results showed significant dependence for Singapore and
Malaysia as well as for Singapore and US, while the dependence for
Malaysia and US was relatively weak.
Keywords: Copulas; EGARCH model; risk measures; tail dependence
ABSTRAK
Kajian ini menumpu kepada pengukuran
risiko yang disebabkan oleh kejadian ekstrim yang berlaku di luar batasan
taburan multivariat normal bagi pulangan bercantum. Konsep kebersandaran ekor
telah didapati berguna sebagai alat bagi menerangkan kebersandaran di kalangan
data ekstrim dalam kewangan. Secara spesifik, kami mengadaptasi pendekatan
multivariate Copula-EGARCH untuk mengkaji kewujudan
kebersandaran bersyarat antara pasaran kewangan antarabangsa. Kami juga
mencadangkan campuran copula Clayton-Gumbel dengan penganggar bagi mengukur
kedua-dua had atas dan bawah ekor kebersandaran. Keputusan kajian ini
menunjukkan kebersandaran yang signifikan antara Singapura-Malaysia serta
Singapura-Amerika Syarikat, manakala kebersandaran untuk Malaysia-Amerika
Syarikat adalah lemah secara relatif.
Kata kunci: Copula; kebersandaran ekor; model EGARCH;
ukuran risiko
REFERENCES
Abu Hassan,
M.N., Shamiri, A. & Zaidi, I. 2009. Comparing the Accuracy of Density
Forecasts from Competing GARCH Models. Sains Malaysiana 38(1): 95-104.
Abu Hassan, M.N.
& Shamiri, A. 2007. Modeling and forecasting volatility of the Malaysian
and the Singaporean stock indices using asymmetric GARCH models and non-normal
densities. Malaysian Journal of Mathematical Sciences 1(1): 83-102.
Ang, A. &
Bekaert, G. 2002. Short Rate Nonlinearities and Regime Switches. Journal of
Economic Dynamics and Control 26(7-8): 1243-1274.
Ang, A. &
Chen, J. 2002. Asymmetric Correlations of Equity Portfolios. Journal of
Financial Economics 63(3): 443-494.
Bae, K.H.,
Karolyi, G.A. & Stulz, R.M. 2003. A New Approach to Measuring Financial
Contagion. Review of Financial Studies 16(3): 217-263.
Cherubini, U.,
Luciano, E. & Vecchiato, W. 2004. Copula Methods in Finance. New
York: John Wiley & Sons.
Embrechts, P.,
Kaufman, R. & Patie, P. 2005. Strategic longterm financial risks: Single
risk factors. Computational Optimization Application 32(1-2): 61-90.
Embrechts, P.,
McNeil, A. & Straumann, D. 2002. Correlation and dependence in risk
management: Properties and pitfalls. In Risk Management: Value at Risk and
Beyond. M.A.H. Dempster (ed.): Cambridge: Cambridge University Press pp.
176-223.
Engle, R.F.
2002. Dynamic conditional correlation: a simple class of multivariate
generalized autoregressive conditional heteroscedasticity models. Journal of
Business and Economic Statistics 20: 339-350.
Gumbel, B. 1960.
Atypischer Verlauf eines Schubkanals – Ein Kasuistischer Beitrag. Deutsche
Zeitschrift furdie Gesamte Gerichtliche Medizin 50(2): 244-245.
Gumbel, E.J.
1960. Bivariate exponential distribution. Journal of the American
Statistical Association 55: 698-707.
Hamo, Y.,
Masulis, R.W. & Ng, V. 1990. Correlations in price changes and volatility
across international stock markets. The Review of Financial Studies 3:
281-307.
Hong, Y. 2001. A
test for volatility spillover with application to exchange rates. Journal of
Econometrics 103: 183-204.
Joe, H. &
Xu, J. 1996. The estimation method of inference functions for margins for
multivariate models. Technical Report No. 166, Department of Statistics,
University of British Columbia, Vancouver.
Joe, H. 1997. Multivariate
Models and Dependence Concepts. London: Chapman & Hall.
Jondeau, E.
& Rockinger, M. 2006. The Copula-GARCH Model of Conditional Dependencies:
an International Stock Market Application. Journal of International Money
and Finance 25: 827-853.
Longin, F. &
Solnik, B. 2001. Extreme Correlation of International Equity Markets. Journal
of Finance 6(2): 649-676.
Miyakoshi T.
2003. Spillovers of stock return volatility to Asian equity markets from Japan
and US. Journal of International Financial Markets, Institutions & Money 13: 383-399.
Nelson, D.B.
1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59(2): 347-370.
Nelsen, R.B.
2006. An Introduction to Copula. New York: Springer.
Sklar, A. 1959.
Fonctions de répartition a n dimensions et leurs marges. Publications de ⎩’Institut de
Statistique de L’Université de Paris 8: 229-231.
*Corresponding author; email: ahmed_shamir@um.edu.my
|