Sains Malaysiana 40(8)(2011): 927–935

 

Tail Dependence Estimate in Financial Market Risk Management: Clayton-Gumbel Copula Approach

(Nilai Kebersandaran Ekor Bagi Anggaran Dalam Pengurusan Risiko Pasaran Kewangan: Pendekatan Clayton-Gumbel Copula)

 

A.     Ahmed Shamiri*, N.A. Hamzah & A. Pirmoradian

Institute of Mathematical Sciences, Faculty of Science, Univeristy of Malaya

50603 Kuala Lumpur, Malaysia

 

Received: 20 May 2010 /Accepted: 10 November 2010

 

ABSTRACT

This paper focuses on measuring risk due to extreme events going beyond the multivariate normal distribution of joint returns. The concept of tail dependence has been found useful as a tool to describe dependence between extreme data in finance. Specifically, we adopted a multivariate Copula-EGARCH approach in order to investigate the presence of conditional dependence between international financial markets. In addition, we proposed a mixed Clayton-Gumbel copula with estimators for measuring both, the upper and lower tail dependence. The results showed significant dependence for Singapore and Malaysia as well as for Singapore and US, while the dependence for Malaysia and US was relatively weak.

 

Keywords: Copulas; EGARCH model; risk measures; tail dependence

 

ABSTRAK

 

Kajian ini menumpu kepada pengukuran risiko yang disebabkan oleh kejadian ekstrim yang berlaku di luar batasan taburan multivariat normal bagi pulangan bercantum. Konsep kebersandaran ekor telah didapati berguna sebagai alat bagi menerangkan kebersandaran di kalangan data ekstrim dalam kewangan. Secara spesifik, kami mengadaptasi pendekatan multivariate Copula-EGARCH untuk mengkaji kewujudan kebersandaran bersyarat antara pasaran kewangan antarabangsa. Kami juga mencadangkan campuran copula Clayton-Gumbel dengan penganggar bagi mengukur kedua-dua had atas dan bawah ekor kebersandaran. Keputusan kajian ini menunjukkan kebersandaran yang signifikan antara Singapura-Malaysia serta Singapura-Amerika Syarikat, manakala kebersandaran untuk Malaysia-Amerika Syarikat adalah lemah secara relatif.

 

Kata kunci: Copula; kebersandaran ekor; model EGARCH; ukuran risiko

 

 

REFERENCES

 

Abu Hassan, M.N., Shamiri, A. & Zaidi, I. 2009. Comparing the Accuracy of Density Forecasts from Competing GARCH Models. Sains Malaysiana 38(1): 95-104.

Abu Hassan, M.N. & Shamiri, A. 2007. Modeling and forecasting volatility of the Malaysian and the Singaporean stock indices using asymmetric GARCH models and non-normal densities. Malaysian Journal of Mathematical Sciences 1(1): 83-102.

Ang, A. & Bekaert, G. 2002. Short Rate Nonlinearities and Regime Switches. Journal of Economic Dynamics and Control 26(7-8): 1243-1274.

Ang, A. & Chen, J. 2002. Asymmetric Correlations of Equity Portfolios. Journal of Financial Economics 63(3): 443-494.

Bae, K.H., Karolyi, G.A. & Stulz, R.M. 2003. A New Approach to Measuring Financial Contagion. Review of Financial Studies 16(3): 217-263.

Cherubini, U., Luciano, E. & Vecchiato, W. 2004. Copula Methods in Finance. New York: John Wiley & Sons.

Embrechts, P., Kaufman, R. & Patie, P. 2005. Strategic longterm financial risks: Single risk factors. Computational Optimization Application 32(1-2): 61-90.

Embrechts, P., McNeil, A. & Straumann, D. 2002. Correlation and dependence in risk management: Properties and pitfalls. In Risk Management: Value at Risk and Beyond. M.A.H. Dempster (ed.): Cambridge: Cambridge University Press pp. 176-223.

Engle, R.F. 2002. Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroscedasticity models. Journal of Business and Economic Statistics 20: 339-350.

Gumbel, B. 1960. Atypischer Verlauf eines Schubkanals – Ein Kasuistischer Beitrag. Deutsche Zeitschrift furdie Gesamte Gerichtliche Medizin 50(2): 244-245.

Gumbel, E.J. 1960. Bivariate exponential distribution. Journal of the American Statistical Association 55: 698-707.

Hamo, Y., Masulis, R.W. & Ng, V. 1990. Correlations in price changes and volatility across international stock markets. The Review of Financial Studies 3: 281-307.

Hong, Y. 2001. A test for volatility spillover with application to exchange rates. Journal of Econometrics 103: 183-204.

Joe, H. & Xu, J. 1996. The estimation method of inference functions for margins for multivariate models. Technical Report No. 166, Department of Statistics, University of British Columbia, Vancouver.

Joe, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall.

Jondeau, E. & Rockinger, M. 2006. The Copula-GARCH Model of Conditional Dependencies: an International Stock Market Application. Journal of International Money and Finance 25: 827-853.

Longin, F. & Solnik, B. 2001. Extreme Correlation of International Equity Markets. Journal of Finance 6(2): 649-676.

Miyakoshi T. 2003. Spillovers of stock return volatility to Asian equity markets from Japan and US. Journal of International Financial Markets, Institutions & Money 13: 383-399.

Nelson, D.B. 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59(2): 347-370.

Nelsen, R.B. 2006. An Introduction to Copula. New York: Springer.

Sklar, A. 1959. Fonctions de répartition a n dimensions et leurs marges. Publications de ’Institut de Statistique de L’Université de Paris 8: 229-231.

 

*Corresponding author; email: ahmed_shamir@um.edu.my

 

 

previous