Sains
Malaysiana 41(11)(2012): 1367–1376
The
Existence of Long Memory in Ozone Time Series
(Kewujudan Ingatan-Panjang dalam Siri Masa Ozon)
Muzirah Musa*
Department of Mathematics, Faculty of
Science and Mathematics
Universiti Pendidikan Sultan Idris, 35900
Tanjong Malim, Perak, Malaysia
Kamarulzaman Ibrahim
School of Mathematical Sciences, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received:
30 September 2011 / Accepted: 21 May 2012
ABSTRACT
ABSTRACT
Long-memory is often observed in time series data. The existence
of long-memory in a data set implies that the successive data points are
strongly correlated i.e. they remain persistent for quite some time. A commonly
used approach in modelling the time series data such as the Box and Jenkins
models are no longer appropriate since the assumption of stationary is not
satisfied. Thus, the scaling analysis is particularly suitable to be used for
identifying the existence of long-memory as well as the extent of persistent
data. In this study, an analysis was carried out on the observed daily mean per
hour of ozone concentration that were available at six monitoring stations
located in the urban areas of Peninsular Malaysia from 1998 to 2006. In order
to investigate the existence of long-memory, a preliminary analysis was done
based on plots of autocorrelation function (ACF)
of the observed data. Scaling analysis involving five methods which included
rescaled range, rescaled variance, dispersional, linear and bridge detrending
techniques of scaled windowed variance were applied to estimate the Hurst coefficient (H) at each station. The
results revealed that the ACF plots indicated a slow decay as
the number lag increased. Based on the scaling analysis, the estimated H values
lay within 0.7 and 0.9, indicating the existence of long-memory in the ozone
time series data. In addition, it was also found that the data were persistent
for the period of up to 150 days.
Keywords: Hurst coefficient;
long-memory; ozone; scaling analysis
ABSTRAK
Ingatan-panjang sering diperhatikan dalam data
siri masa. Kewujudan ingatan-panjang
dalam set data menunjukkan bahawa titik-titik data yang berturut adalah amat
berkait rapat dan berterusan dalam suatu tempoh. Satu pendekatan yang biasa
digunakan dalam pemodelan data siri masa seperti model Box dan Jenkins tidak
lagi sesuai berikutan andaian kepegunan tidak dipenuhi. Oleh
itu, analisis penskalaan sangat sesuai untuk digunakan bagi mengenal pasti
kewujudan ingatan-panjang serta sifat keberterusan data. Dalam kajian ini, analisis dijalankan ke atas data cerapan purata
harian per jam siri masa ozon yang diperoleh daripada enam stesen pemantauan
yang terletak di kawasan Bandar di Semenanjung Malaysia dari tahun 1998-2006. Bagi tujuan penyiasatan kewujudan memori panjang, analisis awal dilakukan
berdasarkan kepada plot fungsi autokorelasi (ACF)
bagi data yang dicerap. Analisis penskalaan yang terdiri daripada lima kaedah
penskalaan yang berbeza yang merangkupi julat penskalaan semula, varians
penskalaan semula, penyerakan, teknik penyahan tren linear dan jambatan dalam
penskalaan varians tertingkap (SWV) digunakan untuk menganggar
pekali Hurst (H) bagi setiap
stesen. Keputusan menunjukkan bahawa plot ACF siri
data menyusut dengan lambat selaras peningkatan lag. Berdasarkan
analisis penskalaan, purata anggaran H terletak di antara 0.7 dan 0.9
menunjukkan kewujudan memori-panjang dalam siri masa ozon. Selain itu, didapati bahawa data tersebut berterusan sehingga ke
150 hari.
Kata kunci: Analisis penskalaan; ingatan-panjang;
ozon; pekali Hurst
REFERENCES
Afroz, R., Hassan, M.N.
& Ibrahim, N.A. 2003. Review of air pollution and health impacts in Malaysia. Environmental
Research 92(2): 71-77.
Azmi, S., Latif, M.,
Ismail, A., Juneng, L. & Jemain, A. 2010. Trend and status of air
quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality, Atmosphere & Health 3(1): 53-64.
Beran, J. 1994. Statistics
for Long-Memory Processes. New York: Chapman & Hall.
Cajueiro, D.O. & Tabak, B.M. 2005. The rescaled variance statistic and the determination of the Hurst
exponent. Mathematics and Computers in Simulation 70(3): 172-179.
Chelani, A.B. 2009. Statistical
persistence analysis of hourly ground level ozone concentrations in Delhi. Atmospheric Research 92(2): 244-250.
Delignieres, D., Ramdani,
S., Lemoine, L., Torre, K., Fortes, M. & Ninot, G. 2006. Fractal analyses for ‘short’ time series:
Are-assessment of classical methods. Journal of Mathematical Psychology 50(6):
525-544.
Hurst, H.E., Black, R.P.
& Simaika, Y.M. 1965. Long-term storage : An Experimental
Study. London: Constable & Co.Ltd.
Juneng, L., Latif, M.T., Tangang, F.T. &
Mansor, H. 2009. Spatio-temporal characteristics of PM10
concentration across Malaysia. Atmospheric Environment 43(30):
4584-4594.
Junninen, H., Niska, H.,
Tuppurainen, K., Ruuskanen, J. & Kolehmainen, M. 2004. Methods for imputation of missing values in air
quality data sets. Atmospheric Environment 38(18): 2895-2907.
Kai, S., Chun-Qiong, L., Nan-Shan,
A. & Xiao-Hong, Z. 2008. Using three methods to investigate time-scaling
properties in air pollution indexes time series. Nonlinear Analysis: Real
World Applications 9(2): 693-707.
Koutsoyiannis, D. 2003. Climate
change, the Hurst phenomenon and hydrological statistics. Hydrological
Sciences Journal 48(1): 3-24.
Li, Z. & Zhang, Y-K. 2007. Quantifying
fractal dynamics of groundwater systems with detrended fluctuation analysis. Journal
of Hydrology 336(1-2): 139-146.
Mandelbrot, B.B. & Ness, J.W.V. 1968. Fractional brownian motions, fractional noises and applications. SIAM Review 10(4): 422-437.
Peter, E.E. 1994. Fractal Market Analysis:
Applying Chaos Theory to Investment and Economic. New York: John Wiley
& Son, Inc.
Samorodnitsky, G. 2006. Long
Range Dependence. New York, USA: Now Publishers Inc.
Varotsos, C., Ondov, J.
& Efstathiou, M. 2005. Scaling properties of air pollution in Athens, Greece and
Baltimore, Maryland. Atmospheric Environment 39(22): 4041-4047.
Weng, Y-C., Chang, N-B.
& Lee, T.Y. 2008. Nonlinear time series analysis of
ground-level ozone dynamics in Southern Taiwan. Journal of
Environmental Management 87(3): 405-414.
Windsor,
H.L. & Toumi, R. 2001. Scaling and persistence of UK
pollution. Atmospheric Environment 35(27): 4545-4556.
Zhu, J. & Liu, Z. 2003. Long-range
persistence of acid deposition. Atmospheric Environment 37(19):
2605-2613.
*Corresponding
author; email: Muzirah@Fsmt.Upsi.Edu.My
|