Sains Malaysiana 41(11)(2012): 1475–1482
Free
Convection Boundary Layer Flow of a Nanofluid from a Convectively Heated
Vertical Plate with Linear Momentum Slip Boundary Condition
(Aliran Lapisan Sempadan Olakan Bebas Nanobendalir terhadap Plat Menegak
yang dipanaskan
Secara Berolak dengan Syarat Sempadan Gelinciran Momentum Linear)
Md.
Jashim Uddin & A.I. Md. Ismail
School
of Mathematical Sciences, University of Sains Malaysia, 1800 USM,
Penang, Malaysia
I.
Pop*
Faculty
of Mathematics, University of Cluj, CP 253, R-3400 Cluj, Romania
Received:
2 February 2012 / Accepted: 9 April 2012
ABSTRACT
Two dimensional steady laminar boundary layer flow of a nanofluid
over a convectively heated vertical flat plate with linear momentum slip
boundary condition has been studied numerically. The governing boundary layer
equations are non-dimensionalized and transformed into a two point boundary
value problem of coupled nonlinear ordinary differential equations in
similarity variable before being solved numerically. The resulting equations
with corresponding boundary conditions have been solved numerically by Maple 13
which uses Runge-Kutta-Fehlberg fourth- fifth order numerical algorithm for
solving nonlinear ordinary boundary value problems. Our analysis reveals that
the similarity solution is possible if the convective heat transfer coefficient
is directly proportional to x–1/4, where x is the axial distance from
the leading edge of the plate. Solutions depend on the seven parameters:
Prandtl number, buoyancy ratio, Brownian motion, thermophoresis, Lewis number,
momentum slip and convective heat transfer. The effects of the governing
parameters on the flow and heat transfer characteristics have been shown
graphically and discussed. Comparisons of the present numerical solution with
the existing results in the literature are made and our results are in very
good agreement. Results for the skin friction factor, the reduced Nusselt and
the Sherwood numbers are provided in tabular form for various values of the
convective heat transfer parameter. It is found that the skin friction
coefficint reduces with the momentum slip and the buoyancy ratio parameters
whilst it enhances with the convective heat transfer parameter. It is also
found that mass transfer rate enhances with the Lewis number and the convective
heat transfer parameter whilst it falls with the thermophoresis parameter.
Keywords: Free convection; momentum slip boundary condition;
nanofluids; thermal convective boundary condition
ABSTRAK
Aliran lapisan sempadan berlamina dua dimensi yang mantap bagi
nanobendalir ke atas plat menegak yang dipanaskan secara berolak dengan syarat
sempadan gelinciran momentum linear dikaji secara berangka. Persamaan
menakluk lapisan sempadan dijadikan tanpa dimensi dan dijelmakan kepada masalah
nilai sempadan dua titik yang terdiri daripada persamaan perbezaan biasa tidak
linear terganding dalam bentuk pemboleh ubah keserupaan sebelum diselesaikan
secara berangka. Persamaan yang terhasil bersama-sama syarat sempadan
yang sepadan telah diselesaikan secara berangka melalui Maple 13 dengan
menggunakan algoritma berangka Runge-Kutta-Fehlberg peringkat keempat-kelima
untuk menyelesaikan masalah nilai sempadan tak linear. Analisis ini mendedahkan
bahawa penyelesaian keserupaan adalah mungkin sekiranya pekali pemindahan haba
berolak berkadar langsung dengan x–1/4, dengan x ialah jarak paksi dari
pinggir depan plat. Penyelesaian bergantung kepada parameter berikut:
pergerakan Brownian, perpindahan haba, nombor Lewis, nombor Prandtl, gelinciran
momentum dan pemindahan haba berolak. Kesan parameter
menakluk ke atas aliran dan ciri-ciri pemindahan haba telah dipamerkan secara
bergraf dan dibincangkan. Perbandingan keputusan
berangka kajian ini dilakukan dan didapati menepati keputusan yang sedia ada
dalam kajian lepas. Keputusan bagi faktor geseran
kulit, nombor Nusselt terturun dan nombor Sherwood diberikan dalam bentuk
berjadual untuk pelbagai nilai parameter pemindahan haba berolak. Didapati bahawa faktor geseran kulit mengurang dengan slip momentum dan
parameter nisbah keapungan dan pada masa yang sama ia
meningkat dengan parameter pemindahan haba perolakan. Kadar pemindahan jisim
juga didapati meningkat dengan nombor Lewis dan parameter pemindahan haba
berolak dan pada masa yang sama ia jatuh dengan
parameter thermophoresis.
Kata kunci: Nanobendalir;
olakan bebas; syarat sempadan gelinciran momentum; syarat sempadan haba berolak
REFERENCES
Arifin, N.M., Nazar, R. & Pop, I. 2011. Viscous flow due to a permeable stretching/shrinking sheet in a
nanofluid. Sains Malaysiana 40(12): 1359-1367.
Aziz, A., Uddin, M.J.,
Hamad, M.A.A. & Ismail, AI.M. 2012. MHD flow over an inclined radiating plate with the
temperature-dependent thermal conductivity, variable reactive index, and heat
generation. Heat Transfer Asian Research (Online).
Aziz, A. 2009. A similarity solution for
laminar thermal boundary over a flat plate with a convective boundary
condition. Communications in Nonlinear Science and Numerical
Simulations 15: 1064-1068.
Aziz, A. 2010. Hydrodynamic and thermal slip flow boundary
layers over a flat plate with constant heat flux boundary condition. Communications
in Nonlinear Science and Numerical Simulations 15: 573-580.
Bachok, N., Ishak, A. &
Pop, I. 2010. Boundary-layer
flow of nanofluids over a moving surface in a flowing fluid. International
Journal of Thermal Sciences 49: 1663-1668.
Buongiorno, J. 2006. Convective
transport in nanofluids. ASME Journal of Heat Transfer 128:
240-250.
Godson, L.B., Raja, D., Mohan Lal, D. &
Wongwisesc, S. 2010. Enhancement of heat transfer using nanofluids – An
overview. Renewable and Sustainable Energy Reviews 14: 629-641.
Gorla, R.S.R. & Chamkha, A. 2011. Natural
convective boundary layer flow over a horizontal plate embedded in a porous
medium saturated with a nanofluid. Journal of Modern Physics 2: 62-71.
Hak. G.M. 2002. Flow Physics in the MEMS Handbook.
Boca Raton, FL: CRC Press.
Incropera, F.P., Dewitt, D.P., Bergman, T.L.
& Lavine, A.S. 2007. Fundamentals of Heat and Mass
Transfer. 6th ed. New York: John
Wiley.
Ishak A. 2010. Similarity solutions for flow and
heat transfer over a permeable surface with convective boundary conditions. Applied
Mathematics and Computation 217: 837-842.
Jaluria, Y. 1980. Natural Convection: Heat
and Mass Transfer. Oxford: Pergamon Press.
Kandasamy, R., Loganathan, P. & Puvi Arasu,
P. 2011. Scaling group transformation for MHD boundary-layer flow of a
nanofluid past a vertical stretching surface in the presence of
suction/injection, Nuclear Engineering and Design 241(6): 2053-2059.
Kakaç, S., Özerinç, S.
& Yaz?c?oğlu, A.G. 2010. Enhanced thermal conductivity of nanofluids: A state-of-the-art
review. Microfluid Nanofluid 8: 145-170.
Kaufui V.W. & Omar,
D.L. 2010. Applications of
nanofluids: Current and future. Adv. In Mech. Eng. 2010. Article ID 519659, doi:10.1155/2010/519659.
Khair, K.R. & Bejan, A. 1985. Mass transfer
to natural convection boundary layer flow driven by heat transfer. ASME
Journal of Heat Transfer 107: 979-981.
Khan, W.A. & Aziz, A.
2011. Natural
convection flow of nanofluid over a vertical plate with uniform surface heat
flux. International Journal of Thermal Science 50: 207-1214.
Kuznetsov, A.V. &
Nield, D.A. 2010a. Natural
convective boundary-layer flow of a nanofluid past a vertical plate. International
Journal of Thermal Science 49: 243-247.
Kuznetsov, A.V. &
Nield, D.A. 2010b. Thermal instability in a
porous medium layer saturated by a nanofluid: Brinkman model. Transport in
Porous Media 81: 409-422.
Kuznetsov, A.V. & Nield, D.A. 2010c. Effect of local thermal
non-equilibrium on the onset of convection in a porous medium layer saturated
by a nanofluid. Transport in Porous Media 83: 425-436.
Magyari, E. 2011. Comment on ‘A similarity solution for laminar thermal
boundary layer over a flat plate with a convective surface boundary condition’
by A. Aziz, Comm.Non. Sci. Numer. Simul. 2009;14:1064–8. Communications in Nonlinear Science and Numerical Simulations 16:
599-601.
Makinde, O.D. & Aziz A. 2011. Boundary layer flow of a nanofluid past a
streaching sheet with convective boundary condition, Int. J. of Ther. Sci. 50: 1326-1332.
Martin, M.J. & Boyd, I.D. 2010. Falkner-Skan flow over a wedge with slip boundary conditions. AIAA
Journal of Thermo physics and Heat Transfer 24(2): 263-270.
Mathews, M.T. & Hill, J.M. 2007. Micro/nano
thermal boundary layer equations with slip-creep-jump boundary conditions. IMA Journal of Applied Mathematic 72: 894-911.
Mukhopadhyay, S. & Andersson, H.I. 2009. Effects of slip
and heat transfer analysis of flow over an unsteady stretching surface. Heat
Mass Transfer 45: 1447-1452.
Murshed, S.M.S., Leong, K.C. & Yang, C. 2008. Thermophysical and electrokinetic properties of nanofluids–a
critical review. Applied Thermal Engineering 28: 2109-2125.
Nield, D.A. & Kuznetsov, A.V. 2009. The
Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of
Heat Mass Transfer 52: 5792-5795.
Pantokratoras, A. 2009. A common error made in investigation of boundary layer
flows. Appl. Math. Model.33: 413-422.
Patankar, S.V. & Spalding D.B.
1970. Heat and Mass Transfer in Boundary
Layers. 2nd ed. London: Intertext Books.
Ram, P.C. 1991. Recent developments of heat and mass
transfer in hydromagnetic flows. International Journal of Energy Research 15(9):
691-713.
Uddin, M.J., Khan, W.A. & Ismail, A.I.M. 2012. Free
convection boundary layer flow from a heated upward facing horizontal flat
plate embedded in a porous medium filled by a nanofluid and with a convective
boundary condition. Transport in Porous Media 2012.
DOI10.1007/s11242-01109938-z.
Wang, C.Y. 2009. Analysis of viscous flow
due to stretching sheet with surface slip and suction. Nonlinear
Analysis and Real World Applications 10: 375-80.
Yacob, N.A., Ishak, A. & Pop, I. 2011. Falkner-Skan
problem for a static or moving wedge in nanofluids. International
Journal of Thermal Science 50: 133-139.
Yao, S., Fang, T. & Zhong, Y. 2011. Heat transfer of a generalized stretching/shrinking wall
problem with convective boundary conditions. Communications in Nonlinear
Science and Numerical Simulations 16: 752-760.
*Corresponding
author; email: popm.ioan@yahoo.co.uk
|