Sains Malaysiana 41(11)(2012):
1489–1493
A
Novel Computing Approach for Third Order Boundary Layer Equation
(Kaedah Pengiraan Baru bagi Persamaan Lapisan Sempadan Tertib
Ketiga)
Yasir Khan*
Department of Mathematics, Zhejiang University, Hangzhou
310027, China
Zdeněk Smarda
Department of Mathematics, Faculty of Electrical Engineering
and Communication
Brno University of Technology, Technicka 8, 61600 Brno Czech
Republic
Received: 15 June 2012 / Accepted: 15 July 2012
ABSTRACT
This paper proposed an efficient modification of homotopy perturbation transform
method (HPTM),
namely modified homotopy perturbation transform method (MHPTM) for the solution
of third order boundary layer equation on semi-infinite domain. The technique
was based on the application of Laplace transform to boundary layers in fluid
mechanics. The nonlinear terms can be easily handled by the use of He’s polynomials.
The Pade´ approximants, that often show superior performance over series
approximations, were effectively used in the analysis to capture the essential
behavior of the boundary layer equation on infinity. We then conduct a
comparative study between the MHPTM and the existing results with the help
of third order boundary layer equation. The results obtained indicated that the MHPTM was
effective and promising.
Keywords: He’s polynomials; modified Adomian decomposition method
(MADM);
modified Laplace decomposition method (MLDM); Pade´ approximants; third order
boundary layer equation
ABSTRAK
Makalah ini mencadangkan pengubahsuaian yang
lebih cekap untuk kaedah jelmaan usikan homotopi (HPTM), iaitu kaedah
jelmaan usikan homotopi terubah suai (MHPTM) untuk menyelesaikan persamaan lapisan
sempadan peringkat tiga dalam domain semi-terhingga. Teknik ini adalah berasaskan
penggunaan jelmaan Laplace bagi lapisan sempadan dalam mekanik bendalir. Sebutan tak linear boleh ditangani dengan mudah menggunakan
polinomial He. Penghampiran Padé yang sentiasa
menunjukkan prestasi yang baik terhadap penghampiran-penghampiran siri
digunakan secara cekap dalam analisis untuk memperoleh telatah penting
persamaan lapisan sempadan di ketakterhinggaan. Kajian
bandingan antara MHPTM dengan keputusan sedia ada dengan
bantuan persamaan lapisan sempadan peringkat tiga juga dilakukan. Keputusan yang diperoleh menunjukkan yang MHPTM adalah berkesan dan
meyakinkan.
Kata kunci: Kaedah
penguraian Adomian terubah suai (MADM); kaedah penguraian
Laplace terubah suai (MLDM); penghampiran Padé;
persamaan lapisan sempadan peringkat tiga; polinomial He
REFERENCES
Abdou, M.A. 2005. Adomian decomposition
method for solving the telegraph equation in charged particle transport. Journal of Quantitative Spectroscopy and Radiative Transfer 95: 407-414.
Abdou, M.A. 2007. On the variational
iteration method. Physics Letters A 366: 61-68.
Adomian, G. 1994. Solving Frontier Problems of Physics:
The Decomposition Method. Boston: Kluwer Academic Publication.
Baker, G.A. 1975. Essentials of Pade´
Approximants. London: Academic Press.
Biazar, J. 2005. Solution of systems of
integral-differential equations by Adomian decomposition method. Applied
Mathematics and Computation 168: 1232-1238.
Biazar, J. 2006. Solution of the epidemic
model by Adomian decomposition method. Applied Mathematics and
Computation 173: 1101-1106.
Biazar, J., Porshokuhi, M.G. & Ghanbari, B. 2010.
Extracting a general iterative method from an Adomian decomposition method and
comparing it to the variational iteration method. Computers and Mathematics
with Applications 59: 622-628.
Biazar, J. & Ghanbari, B. 2012. The
homotopy perturbation method for solving neutral functional-differential
equations with proportional delays. Journal of King Saud University
(Science) 24: 33-37.
Biazar, J. & Ghanbari, B. 2012. HAM
solution of some initial value problems arising in heat radiation equations. Journal of King Saud University (Science) 24: 161-165.
El-Wakil, S.A. & Abdou, M.A. 2007. New applications of Adomian decomposition
method. Chaos, Solitons & Fractals 33: 513-522.
El-Wakil, S.A. & Abdou, M.A. 2008. New applications of variational iteration
method using Adomian polynomials. Nonlinear Dynamics 52: 41-49.
Ghorbani, A. 2009. Beyond Adomian’s polynomials: He polynomials. Chaos,
Solitons & Fractals 39: 1486-1492.
Khan, Y. 2009. An effective modification of the Laplace
decomposition method for nonlinear equations. International Journal
of Nonlinear Sciences and Numerical Simulation 10: 1373-1376.
Khan, Y. & Austin, F. 2010. Application of the Laplace decomposition
method to nonlinear homogeneous and non-homogeneous advection equations. Zeitschriftfuer Naturforschung A 65: 849-853.
Khan, Y. & Faraz, N. 2011 Application of modified
Laplace decomposition method for solving boundary layer equation. Journal of
King Saud University (Science): 115-119.
Khan, Y., Madani, M., Yildirim, A.,
Abdou, M.A. & Faraz, N. 2011. A new approach to Van der Pol’s Oscillator Problem. Zeitschriftfuer
Naturforschung A 66: 620-624.
Khan, Y., Wu, Q., Faraz, N. &
Yildirim, A. 2011. The effects of variable viscosity and
thermal conductivity on a thin film flow over a shrinking/stretching sheet. Computers
and Mathematics with Applications 61: 3391-3399.
Khan, Y. & Wu, Q. 2011. Homotopy perturbation transform method for nonlinear
equations using He’s polynomials. Computers and Mathematics with
Applications 61: 1963-1967.
Slota, D. 2010. The application of the
homotopy perturbation method to one-phase inverse Stefan problem. International
Communications in Heat and Mass Transfer 37: 587-592.
Slota, D. 2011. Homotopy perturbation
method for solving the two-phase inverse Stefan problem. Numerical
Heat Transfer Part A: Applications 59: 755-768.
Šmarda, Z. & Archalousova, O.
2010. Adomian
decomposition method for certain singular initial value problems II. Journal
of Applied Mathematics 3: 91-98.
Soliman, A.A. & Abdou, M.A. 2008. The decomposition
method for solving the coupled modified KdV equations. Mathematical and
Computer Modelling 47: 1035-1041.
Soliman, A.A. 2009. On the solution of two-dimensional
coupled Burgers’ equations by variational iteration method. Chaos, Solitons
and Fractals 40: 1146-1155.
Soliman, A.A. 2011. A numerical simulation of modified
Boussinesq and seven-order Sawada-Kotara equations. International Journal of
Numerical Methods for Heat and Fluid Flow 21: 320-330.
Turkyilmazoglu, M. 2011. Some issues on HPM and HAM methods:
A convergence scheme. Mathematical and Computer Modelling 53: 1929-1936.
Turkyilmazoglu, M. 2011. An optimal
variational iteration method. Applied Mathematics Letters 24:
762-765.
Turkyilmazoglu, M. 2011. An optimal
analytic approximate solution for the limit cycle of Duffing-van der Pol equation. Journal of Applied Mechanics, Transactions ASME 78: 021005.
Wazwaz, A.M. 1997. A study on a boundary-
layer equation arising in an incompressible fluid. Applied
Mathematics and Computation 87: 199-204.
Wazwaz, A.M. 2006. The modified decomposition method and
Pade´ approximants for a boundary layer equation in unbounded domain. Applied
Mathematics and Computation 177: 737-744.
Xu, L. 2007. He’s homotopy perturbation method for a
boundary layer equation in unbounded domain. Computers and Mathematics with
Applications 54: 1067-1070.
Zayed, E.M.E. & Rahman, H.M.A. 2012. On using the He’s polynomials
for solving the nonlinear coupled evolution equations in Mathematical Physics. WSEAS
Transactions on Mathematics 11: 294-302.
*Corresponding
author; email: yasirmath@yahoo.com
|