Sains Malaysiana 41(11)(2012): 1489–1493

 

A Novel Computing Approach for Third Order Boundary Layer Equation

(Kaedah Pengiraan Baru bagi Persamaan Lapisan Sempadan Tertib Ketiga)

 

 

Yasir Khan*

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

 

Zdeněk Smarda

Department of Mathematics, Faculty of Electrical Engineering and Communication

Brno University of Technology, Technicka 8, 61600 Brno Czech Republic

 

 

Received: 15 June 2012 / Accepted: 15 July 2012

 

 

ABSTRACT

This paper proposed an efficient modification of homotopy perturbation transform method (HPTM), namely modified homotopy perturbation transform method (MHPTM) for the solution of third order boundary layer equation on semi-infinite domain. The technique was based on the application of Laplace transform to boundary layers in fluid mechanics. The nonlinear terms can be easily handled by the use of He’s polynomials. The Pade´ approximants, that often show superior performance over series approximations, were effectively used in the analysis to capture the essential behavior of the boundary layer equation on infinity. We then conduct a comparative study between the MHPTM and the existing results with the help of third order boundary layer equation. The results obtained indicated that the MHPTM was effective and promising.

 

Keywords: He’s polynomials; modified Adomian decomposition method (MADM); modified Laplace decomposition method (MLDM); Pade´ approximants; third order boundary layer equation

 

 

ABSTRAK

Makalah ini mencadangkan pengubahsuaian yang lebih cekap untuk kaedah jelmaan usikan homotopi (HPTM), iaitu kaedah jelmaan usikan homotopi terubah suai (MHPTM) untuk menyelesaikan persamaan lapisan sempadan peringkat tiga dalam domain semi-terhingga. Teknik ini adalah berasaskan penggunaan jelmaan Laplace bagi lapisan sempadan dalam mekanik bendalir. Sebutan tak linear boleh ditangani dengan mudah menggunakan polinomial He. Penghampiran Padé yang sentiasa menunjukkan prestasi yang baik terhadap penghampiran-penghampiran siri digunakan secara cekap dalam analisis untuk memperoleh telatah penting persamaan lapisan sempadan di ketakterhinggaan. Kajian bandingan antara MHPTM dengan keputusan sedia ada dengan bantuan persamaan lapisan sempadan peringkat tiga juga dilakukan. Keputusan yang diperoleh menunjukkan yang MHPTM adalah berkesan dan meyakinkan.

 

Kata kunci: Kaedah penguraian Adomian terubah suai (MADM); kaedah penguraian Laplace terubah suai (MLDM); penghampiran Padé; persamaan lapisan sempadan peringkat tiga; polinomial He

 

REFERENCES

 

Abdou, M.A. 2005. Adomian decomposition method for solving the telegraph equation in charged particle transport. Journal of Quantitative Spectroscopy and Radiative Transfer 95: 407-414.

Abdou, M.A. 2007. On the variational iteration method. Physics Letters A 366: 61-68.

Adomian, G. 1994. Solving Frontier Problems of Physics: The Decomposition Method. Boston: Kluwer Academic Publication.

Baker, G.A. 1975. Essentials of Pade´ Approximants. London: Academic Press.

Biazar, J. 2005. Solution of systems of integral-differential equations by Adomian decomposition method. Applied Mathematics and Computation 168: 1232-1238.

Biazar, J. 2006. Solution of the epidemic model by Adomian decomposition method. Applied Mathematics and Computation 173: 1101-1106.

Biazar, J., Porshokuhi, M.G. & Ghanbari, B. 2010. Extracting a general iterative method from an Adomian decomposition method and comparing it to the variational iteration method. Computers and Mathematics with Applications 59: 622-628.

Biazar, J. & Ghanbari, B. 2012. The homotopy perturbation method for solving neutral functional-differential equations with proportional delays. Journal of King Saud University (Science) 24: 33-37.

Biazar, J. & Ghanbari, B. 2012. HAM solution of some initial value problems arising in heat radiation equations. Journal of King Saud University (Science) 24: 161-165.

El-Wakil, S.A. & Abdou, M.A. 2007. New applications of Adomian decomposition method. Chaos, Solitons & Fractals 33: 513-522.

El-Wakil, S.A. & Abdou, M.A. 2008. New applications of variational iteration method using Adomian polynomials. Nonlinear Dynamics 52: 41-49.

Ghorbani, A. 2009. Beyond Adomian’s polynomials: He polynomials. Chaos, Solitons & Fractals 39: 1486-1492.

Khan, Y. 2009. An effective modification of the Laplace decomposition method for nonlinear equations. International Journal of Nonlinear Sciences and Numerical Simulation 10: 1373-1376.

Khan, Y. & Austin, F. 2010. Application of the Laplace decomposition method to nonlinear homogeneous and non-homogeneous advection equations. Zeitschriftfuer Naturforschung A 65: 849-853.

Khan, Y. & Faraz, N. 2011 Application of modified Laplace decomposition method for solving boundary layer equation. Journal of King Saud University (Science): 115-119.

Khan, Y., Madani, M., Yildirim, A., Abdou, M.A. & Faraz, N. 2011. A new approach to Van der Pol’s Oscillator Problem. Zeitschriftfuer Naturforschung A 66: 620-624.

Khan, Y., Wu, Q., Faraz, N. & Yildirim, A. 2011. The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. Computers and Mathematics with Applications 61: 3391-3399.

Khan, Y. & Wu, Q. 2011. Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Computers and Mathematics with Applications 61: 1963-1967.

Slota, D. 2010. The application of the homotopy perturbation method to one-phase inverse Stefan problem. International Communications in Heat and Mass Transfer 37: 587-592.

Slota, D. 2011. Homotopy perturbation method for solving the two-phase inverse Stefan problem. Numerical Heat Transfer Part A: Applications 59: 755-768.

Šmarda, Z. & Archalousova, O. 2010. Adomian decomposition method for certain singular initial value problems II. Journal of Applied Mathematics 3: 91-98.

Soliman, A.A. & Abdou, M.A. 2008. The decomposition method for solving the coupled modified KdV equations. Mathematical and Computer Modelling 47: 1035-1041.

Soliman, A.A. 2009. On the solution of two-dimensional coupled Burgers’ equations by variational iteration method. Chaos, Solitons and Fractals 40: 1146-1155.

Soliman, A.A. 2011. A numerical simulation of modified Boussinesq and seven-order Sawada-Kotara equations. International Journal of Numerical Methods for Heat and Fluid Flow 21: 320-330.

Turkyilmazoglu, M. 2011. Some issues on HPM and HAM methods: A convergence scheme. Mathematical and Computer Modelling 53: 1929-1936.

Turkyilmazoglu, M. 2011. An optimal variational iteration method. Applied Mathematics Letters 24: 762-765.

Turkyilmazoglu, M. 2011. An optimal analytic approximate solution for the limit cycle of Duffing-van der Pol equation. Journal of Applied Mechanics, Transactions ASME 78: 021005.

Wazwaz, A.M. 1997. A study on a boundary- layer equation arising in an incompressible fluid. Applied Mathematics and Computation 87: 199-204.

Wazwaz, A.M. 2006. The modified decomposition method and Pade´ approximants for a boundary layer equation in unbounded domain. Applied Mathematics and Computation 177: 737-744.

Xu, L. 2007. He’s homotopy perturbation method for a boundary layer equation in unbounded domain. Computers and Mathematics with Applications 54: 1067-1070.

Zayed, E.M.E. & Rahman, H.M.A. 2012. On using the He’s polynomials for solving the nonlinear coupled evolution equations in Mathematical Physics. WSEAS Transactions on Mathematics 11: 294-302.

 

 

*Corresponding author; email: yasirmath@yahoo.com

 

 

previous