Sains Malaysiana 43(5)(2014):
723–731
Sebatian Meruap, Ciri Fizikokimia dan Penilaian Sensori Tiga
Jenis Santan
dalam Pasaran Malaysia
(Volatile Compounds,
Physico-chemical Characteristics and Sensory Evaluation
of Three Types
of Coconut Milk in Malaysian Market)
LIM SENG JOE, WAN AIDA WAN MUSTAPHA* & MOHAMAD YUSOF MASKAT
Pusat
Pengajian Sains Kimia dan Teknologi Makanan. Fakulti Sains dan
Teknologi
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 28 January
2011/Accepted: 9 September 2013
ABSTRAK
Kajian ini dijalankan untuk
membandingkan profil sebatian meruap, ciri fizikokimia dan penilaian sensori
antara santan segar, santan UHT dan santan serbuk. Kaedah mikroekstraksi fasa
pepejal (SPME) digunakan untuk
mengekstrak sebatian meruap dalam sampel dan dianalisis menggunakan
kromatografi gas-spektrometer jisim (GC-MS). Analisis profil sebatian meruap menunjukkan santan segar mempunyai tujuh sebatian meruap manakala santan UHT dan santan serbuk masing-masing mempunyai empat dan lima sebatian
meruap. Sebatian meruap utama yang terdapat di dalam santan
adalah delta-lakton. Santan segar mengandungi
kandungan protein (2.35 ± 0.17%), lemak (25.57 ± 1.56%) dan abu (0.82 ± 0.03%)
tertinggi secara bererti (p<0.05) manakala santan serbuk (berat
basah) mengandungi kandungan lembapan (78.77 ± 0.37%) dan karbohidrat (8.06 ±
0.41%) tertinggi secara bererti (p<0.05) dan asid lemak bebas (0.43 ±
0.03%) terendah secara bererti (p<0.05). Bacaan pH menunjukkan bahawa
santan serbuk (5.90 ± 0.11) bersifat lebih berasid secara bererti (p<0.05)
berbanding dengan santan segar (6.16 ± 0.02) dan
santan UHT (6.17 ± 0.04%). Bagi
analisis kelikatan, santan UHT mempunyai
kelikatan tertinggi, kerana telah ditambah dengan karagenan dan berbeza secara
bererti (p<0.05) dengan santan segar dan
santan serbuk. Melalui ujian L*, a*, b*, didapati bahawa warna bagi santan UHT dan santan serbuk adalah lebih
cerah dan putih secara bererti (p<0.05) berbanding santan segar. Penilaian sensori menunjukkan bahawa santan segar mempunyai min skor darjah kesukaan tertinggi bagi
aroma kelapa, perisa asing, aroma keseluruhan dan penerimaan keseluruhan. Santan UHT pula
mempunyai min skor darjah kesukaan tertinggi dari segi warna dan kelikatan.
Kata kunci: Ciri fizikokimia;
penilaian sensori; santan segar; santan serbuk; santan UHT; sebatian meruap
ABSTRACT
This research was done to compare
the volatile compounds profile, physico-chemical characteristics and sensory
evaluation between fresh, UHT and
powdered coconut milk. Solid phase microextraction method (SPME)
was used to extract volatile compounds from samples for analysis using gas
chromatography-mass spectrometry (GC-MS).
Volatile compounds profile analysis showed that there were seven, four and five
volatile compounds in fresh, UHT and
powdered coconut milk, respectively. The main volatile compounds in coconut
milk were delta-lactones. Fresh coconut milk contains the highest (p<0.05)
protein (2.35 ± 0.17%), fat (25.57 ± 1.56%) and ash content (0.82 ± 0.03%),
while powdered coconut milk (wet weight) contains the highest (p<0.05)
moisture (78.77 ± 0.37%) and carbohydrate (8.06 ± 0.41%) content and lowest (p<0.05)
free fatty acid content (0.43 ± 0.03%). The pH of powdered coconut milk (5.90 ±
0.11) was significantly (p<0.05) more acidic compared to that of
fresh (6.16 ± 0.02) and UHT coconut
milk (6.17 ± 0.04%). Viscosity analysis showed that UHT coconut milk has the highest viscosity due to the addition of
carrageenan and was significantly different (p<0.05) from fresh and
powdered coconut milk. The colour of UHT and
powdered coconut milk were significantly (p<0.05) lighter and whiter
compared to that of fresh coconut milk. Sensory evaluation shows that fresh
coconut milk has the highest degree of likeness in terms of coconut aroma,
off-flavours, overall aroma and overall acceptance. The UHT coconut milk has the highest degree of likeness in terms of
colour and viscosity.
Keywords: Fresh coconut milk; physicochemical characteristics;
powdered coconut milk; sensory evaluation; UHT coconut milk; volatile
compound
REFERENCES
Bahruddin, S., Cheng,
W.L., Md Sariff, J., Boey, P.L., Abdussalam, S.M.A., Wan, T.W. & Muhammad
Idiris, S. 2007. Determination of free fatty acids in palm oil samples using
non-aqueous flow injection titrimetric method. Food Chemistry 102:
1407-1414.
Belewu, M.A. &
Belewu, K.Y. 2007. Comparative physico-chemical evaluation of tiger-nut,
soybean and coconut milk sources. International Journal of Agriculture &
Biology 9(5): 785-787.
IUPAC. 1997. Compendium
of Chemical Terminology. 2nd ed. (the “Gold Book”). Oxford: Blackwell Scientific Publications. http://goldbook.iupac.org
. Accessed on 5 April 2010.
Jangchud, K.,
Puchakawimol, P. & Jangchud, A. 2007. Quality changes of burnt aromatic
coconut during 28-day storage in different packages. LWT - Food Science and
Technology 40: 1232-1239.
Murano,
P.S. 2003. Understanding Food Science and Technology. Belmont, CA: Thomson /
Wadsworth.
Narataruksa, P.,
Pichitvittayakarn, W., Heggs, P.J. & Tia, S. 2010. Fouling behavior of
coconut milk at pasteurization temperatures. Applied Thermal Engineering 30:
1387-1395.
Nielsen, S.S. 2003. Food
Analysis. Ed. ke-3. New York: Kluwer Academic / Plenum Publishers.
Peamprasart,
T. & Chiewchan, N. 2006. Effect of fat content and preheat treatment on
the apparent viscosity of coconut milk after homogenization. Journal of Food
Engineering 77: 653-658.
Seow, C.C. & Gwee,
C.N. 1997. Coconut milk: Chemistry and technology. International Journal of
Food Science and Technology 32(3): 189-201.
Simuang, J., Chiewchan,
N. & Tansakul, A. 2004. Effects of fat content and
temperature on the apparent viscosity of coconut milk. Journal of Food
Engineering 64: 193-197.
Srinivasan,
M., Singh, H. & Munro, P.A. 2002. Formation and stability of sodium caseinate
emulsions: Influence of retorting (121°C for 15 min) before or after
emulsification. Food Hydrocolloids 16: 153-160.
Tansakul, A. & Chaisawang,
P. 2006. Thermophysical properties of coconut milk. Journal
of Food Engineering 73: 276-280.
Tangsuphoom, N. &
Coupland, J.N. 2008. Effect of surface-active stabilizers on
the microstructure and stability of coconut milk emulsions. Food
Hydrocolloids 22: 1233-1242.
Wright, J. 1992. Synthetic Flavouring Materials. London: Bush
Boake Allen.
*Corresponding author; email: wawm@ukm.my
|