Sains Malaysiana 43(5)(2014):
767–773
Effect
of Different Drying Methods on the Morphology, Crystallinity, Swelling Ability
and
Tensile Properties of Nata De Coco
(Kesan Kaedah Pengeringan Berbeza pada Morfologi, Penghabluran,
Kebolehan
untuk Mengembang dan Kekuatan Tegangan Nata De Coco)
NORHAYATI PA'E, NUR IDAYU ABD HAMID, NOZIEANA KHAIRUDDIN, KHAIRUL
AZLY
ZAHAN,
KOK
FOOK
SENG,
BAZLUL
MOBIN
SIDDIQUE
& IDA
IDAYU
MUHAMAD*
Department of Bioprocess Engineering, Faculty
of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Received: 11 April 2013/Accepted: 3 September 2013
ABSTRACT
Nata de coco or bacterial cellulose produced by Acetobacter
xylinum is a unique type of biocellulose. It contains more than 90% of
water. Dried nata was preferred compared to wet form since it is more
convenient and portable with stable properties. Therefore, drying process is
necessary in order to produce dried nata de coco. Drying method is a key
factor that influenced the properties of dried nata de coco produced.
The aim of this study was to investigate the effect of different drying methods
on morphology, crystallinity, swelling ability and tensile strength of dried nata
de coco. Nata de coco samples were dried using three physical drying
methods such as oven, tray dryer or freeze dryer until it achieved 3-5%
moisture content. Obviously, the three drying techniques produced web-like
structured nata de coco and quite similar crystallinity which was in
range between 87 and 89%. Freeze dried sample showed the largest swelling
capacity and tensile strength which was found to be 148 MPa. Different drying
method gave different properties of nata de coco. Therefore, the present
work proposed the most suitable drying method can be utilized based on the properties
of end product needed.
Keywords: Acetobacter
xylinum; bacterial cellulose; drying process; nata de coco
ABSTRAK
Nata de coco atau selulosa bakteria yang dihasilkan oleh Acetobacter
xylinum merupakan bioselulosa yang unik. Ia mengandungi lebih daripada 90%
air. Oleh itu, proses pengeringan sangat diperlukan untuk menghasilkan nata
de coco kering. Kaedah pengeringan adalah faktor utama yang mempengaruhi
sifat nata de coco yang telah dikeringkan. Kajian ini dijalankan untuk
mengkaji kesan kaedah pengeringan yang berbeza pada morfologi, penghabluran,
kebolehan untuk mengembang dan kekuatan tegangan nata de coco yang telah
dikeringkan. Sampel nata de coco dikeringkan menggunakan tiga kaedah
pengeringan fizikal iaitu ketuhar, pengering dulang atau pengering beku
sehingga ia mencapai kurang daripada 5% kandungan lembapan. Jelas sekali, tiga
teknik pengeringan tersebut menghasilkan nata de coco dengan struktur
jaringan yang tersusun dan nilai penghabluran yang hampir sama iaitu dalam
lingkungan 87-89%. Sampel daripada pengering beku menunjukkan kapasiti
penyerapan air terbesar dan dengan kekuatan tegangan 148 MPa. Kaedah
pengeringan yang berbeza memberikan sifat yang berbeza kepada nata de coco.
Oleh itu, hasil kajian ini dapat mencadangkan kaedah pengeringan yang paling
sesuai digunakan berdasarkan sifat produk akhir yang dikehendaki.
Kata kunci: Acetobacter
xylinum; nata de coco; proses pengeringan; selulosa bakteria
REFERENCES
Bashaiwoldu, A.B., Podczeck, F. & Newton,
J.M. 2004. A study on the effect of drying techniques on the mechanical
properties of pellets and compacted pellets. European Journal of
Pharmaceutical Sciences 21(2-3): 119-129.
Castellano, I., Gurruchaga, M. & Goni, I.
1997. The influence of drying on the physical properties of some graft
copolymers for drug delivery systems. Journal of Carbohydrate Polymers 34(1-2):
83-89.
Chawla, P.R., Bajaj, I.B., Survase, S.A. &
Singhal, R.S. 2009. Microbial cellulose: Fermentative production and
applications. Food Technol. Biotechnol. 47(2): 107-124.
Clasen, C., Sultanova, B., Wilhelms, T., Heisig,
P. & Kulicke, W.M. 2006. Effects of different drying processes on the
material properties of bacterial cellulose membranes. Macromol. Symp. 244:
48-58.
Czaja, W., Romanovicz’, D. & Brown, R.M. Jr. 2004. Structural
investigations of microbial cellulose produced in stationary and agitated
culture. Cellulose 11: 403-411.
Gardner, A.W. 1982. Industrial Drying. Texas:
Gulf Publishing Company.
Geankoplis, C.J. 2003. Transport Processes
and Separation Processes Principles (Includes Unit Operations). USA:
Prentice Hall.
Iuliana, M.J., Anicuta, S.G. & Marta, S.
2012. Controlled release of sorbic acid from bacterial cellulose based mono and
multilayer antimicrobial films. LWT - Food Science and Technology 47:
400-406.
Jagannath, A., Raju, P.S. & Bawa, A.S. 2010.
Comparative evaluation of bacterial cellulose (Nata) as a cryoprotectant
and carrier support during the freeze drying of probiotic lactic acid bacteria. LWT - Food Science and Technology 43: 1197-1203.
Jie, X., Cao, Y., Qin, J.J., Liu, J. & Yuan,
Q. 2005. Influence of drying method on morphology and properties of asymmetric
cellulose hollow fibre membrane. Journal of Membrane Science 246(2):
157-165.
Keshk, S. & Sameshima, K. 2006. Influence of
lignosulfonate on crystal structure and productivity of bacterial cellulose in
a static culture. Enzyme and Microbial Technology 40: 4-8.
Maneerung, T., Tokura, S. & Rujiravanit, R.
2008. Impregnation of silver nanoparticles into bacterial cellulose for
antimicrobial wound dressing. Carbohydrate Polymers 72: 43-51.
Mihranyan, A., Llagostera, A.P., Karmhag, R.,
Stromme, M. & Ek, R. 2004. Moisture sorption by cellulose powders of
varying crystallinity. International Journal of Pharmaceutical 269(2):
433-442.
Nadia, H., Mohd Cairul Iqbal, M.A. & Ishak,
A. 2012. Physicochemical properties and characterization of nata de coco from
local food industries as a source of cellulose. Sains Malaysiana 41(2):
205-211.
Norihiro, K. & Gehrke, S.H. 2004.
Microporous, fast response cellulose ether hydrogel prepared by freeze-drying. Journal
of Colloid and Surfaces 38(3-4): 191-196.
Okiyama, A., Shirae, H., Kano, H. &
Yamanaka, S. 1992. Bacterial cellulose: Two-stage fermentation process for
cellulose production by Acetobacter aceti. Food Hydrocolloids 6: 471-477.
Pa'e, N., Hui, C.C. & Muhamad, I.I. 2007. Shaken
culture fermentation for production of microbial cellulose using
pineapple waste. Proceeding of International Conference on Waste
to Wealth. 26-28 November. Kuala Lumpur. Malaysia Nuclear Agency
(MINT).
Phisalaphong, M. & Jatupaiboon, N. 2008.
Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydrate
Polymers 74: 482-488.
Segal, L., Creely, J.J., Martin, Jr. A.E. &
Conrad, C.M. 1959. An empirical method for estimating the degree of
crystallinity of native cellulose using the X-ray diffractometer. Textile
Research Journal 29(10): 786-794.
Sheng, C.W. & Ying, K.L. 2008. Application
of bacterial cellulose pellets in enzyme immobilization. Journal of Molecular Catalyst B: Enzymatic 54: 103-108.
Sheu, F., Wang, C.L. & Shyu, Y.T. 2000.
Fermentation of Monascus purpureus on bacterial cellulose-nata and the color
stability of Monascus-nata complex. Journal of Food Science (Food
Microbiology and Safety) 65(2): 342-345.
Thakhiew, W., Devahastin, S. &
Soponronnarit, S. 2010. Effects of drying methods and plasticizer concentration
on some physical and mechanical properties of edible chitosan films. Journal
of Food Engineering 99: 216-224.
Wei, B., Yanga, G.
& Hong, F. 2011. Preparation and evaluation of a kind of bacterial
cellulose dry films with antibacterial properties. Carbohydrate Polymers 84:
533-538.
Yeoh, Q.L., Lee, G.L. & Fatimah, H. 1985. Teknologi
pengeluaran Nata. Jurnal Teknologi Makanan 4(1): 36-39.
Zhang, C., Wang, L., Zhao, J. & Zhu, P. 2011. Effect of
drying methods on structure and mechanical properties of bacterial cellulose
films. Advanced Materials Research 239-242: 2667-2670.
*Corresponding
author; email: idayu@cheme.utm.my
|