Sains Malaysiana 43(5)(2014):
799–805
Pemodelan
Titik Data Kabur Teritlak
(Generalized Fuzzy Data Point Modeling)
ROZAIMI ZAKARIA*
& ABD. FATAH WAHAB
Jabatan Matematik, Fakulti Sains dan Teknologi, Universiti
Malaysia Terengganu (UMT)
21030 Kuala Terengganu, Terengganu, Malaysia
Received: 25 January 2013/Accepted: 26 August 2013
ABSTRAK
Di dalam kertas ini, pendekatan dalam mentakrifkan ketakpastian
titik data melalui pendekatan konsep nombor kabur yang sedia ada dapat
diitlakkan. Pengitlakan ini termasuk pentakrifan ketakpastian data yang akan
menjadi titik data kabur (titik kawalan kabur) selepas ditakrifkan oleh konsep
nombor kabur. Kemudian, kajian ini juga membincangkan tentang proses
pengkaburan (operasi potongan-alfa) terhadap titik data kabur tersebut dalam
bentuk segitiga nombor kabur diiringi dengan beberapa teorem dan juga
pembuktiannya. Selain itu, kami juga turut memodelkan titik data kabur tersebut
melalui fungsi lengkung yang sedia ada iaitu fungsi lengkung Bezier. Selepas
itu, turut dicadangkan juga ialah proses penyahkaburan terhadap titik data
kabur selepas operasi potongan-alfa diimplementasikan bagi memperoleh
penyelesaian titik data kabur rangup sebagai keputusan akhir yang turut
dimodelkan melalui fungsi lengkung Bezier dengan disertai beberapa teorem bagi
memahami bentuk data tersebut.
Kata kunci: Lengkung kabur; nombor kabur; operasi potongan-alfa;
penyahkaburan; titik data kabur
ABSTRACT
In this paper, the approach in defining the uncertainty data
points through the concept of the existing fuzzy numbers can be generalized.
This generalization includes the defining uncertainty data which will become
fuzzy data point (fuzzy control point) after being defined by the fuzzy numbers
concepts. Then, this study also discusses the fuzzification process (alpha-cut
operation) of the fuzzy data points in the form of triangular fuzzy numbers
that was accompanied by some theorems and their proofs. In addition, we also
model the fuzzy data points through the existing curve function of Bezier curve
function. Then, we also proposed a defuzzification process which was applied
towards the fuzzy data points after the fuzzification process to obtain crisp
fuzzy data points solution as the final result which was being modeled by using
the Bezier curve function jointly with some theorems for more understanding.
Keywords: Alpha-cut operation; defuzzification;
fuzzy curve; fuzzy data points; fuzzy number
REFERENCES
Abbasbandy, S. 2001. Interpolation of fuzzy data
by complete splines. Journal of Applied Mathematics and Computing 8(3):
587-594.
Abbasbandy, S. & Babolian, E. 1998.
Interpolation of fuzzy data by natural splines. Journal of Applied
Mathematics and Computing 5(2): 457-463.
Abbasbandy, S., Ezzati, R. & Behforooz, H.
2008. Interpolation of fuzzy data by using fuzzy splines. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16(1):
107-115.
Abd. Fatah Wahab, Jamaludin Md Ali, Ahmad Abd
Majid & Abu Osman Md. Tap. 2010. Penyelesaian masalah data ketakpastian
menggunakan Splin-B kabur. Sains Malaysiana 39(4): 661-670.
Abd. Fatah Wahab & Rozaimi Zakaria. 2012. Fuzzy interpolation
rational cubic bezier curves modeling of blurring offline handwriting signature
with different degree of blurring. Applied Mathematical Sciences 6(81):
4005-4016.
Abd. Fatah Wahab 2008. Pemodelan Geometri Menggunakan Teori Set Kabur. Universiti Sains
Malaysia (tidak diterbitkan).
Abd. Fatah Wahab, Jamaluddin Md Ali & Ahmad Abd. Majid.
2009. Fuzzy geometric modeling. In Proceedings. International Conference on
Computer Graphics, Imaging and Visualization, CGIV 2009.
Abd. Fatah Wahab, Jamaluddin Md Ali, Ahmad Abd. Majid &
Md. Tap Abu Osman. 2004. Fuzzy set in geometric modeling. In Proceedings,
International Conference on Computer Graphics, Imaging and Visualization, CGIV
2004.
Anile, A.M., Falcidieno, B., Gallo, G., Spagnuolo, M. &
Spinello, S. 2000. Modeling uncertain data with fuzzy B-splines. Fuzzy Sets
and Systems 113(3): 397-410.
Behforooz, H., Ezzati, R. & Abbasbandy, S. 2010.
Interpolation of fuzzy data by using E(3) cubic splines. International
Journal of Pure and Applied Mathematics 60(4): 383-392.
Dubois, D. & Prade, H. 1980. Fuzzy Sets and Systems:
Theory and Applications. New York: Academic Press.
Farin, G., Hoschek, J. & Kim, M-S. 2002. Handbook of
Computer Aided Geometric Design. The Netherlands: Elsevier Science B.V.
Farin, G. 2002. Curves and Surfaces for CAGD: A Practical
Guide. 5th ed. USA: Academic Press.
Farin, G. 1999. NURBS for Curve and Surface Design: From
Projective Geometry to Practical Use. 2nd ed. Massachusetts: AK Peters,
Ltd.
Gallo, G. & Spagnuolo, M. 1998. Uncertainty coding and
controlled data reduction using fuzzy-B-splines. In Proceedings Computer Graphics
International, 22-26 June.
Gallo, G., Spagnuolo, M. & Spinello, S. 1998. Rainfall
estimation from sparse data with fuzzy B-splines. Journal of Geographic
Information and Decision Analysis 2(2): 194-203.
Gallo, G., Spagnuolo, M. & Spinello, S. 2000. Fuzzy
B-splines: A surface model encapsulating uncertainty. Graphical Models 62(1):
40-55.
Klir, G.J. & Yuan, B. 1995. Fuzzy Sets and Fuzzy
Logic: Theory and Application. New York: Prentice Hall.
Klir, G.J., Clair, U.S. & Yuan, B. 1997. Fuzzy Set
Theory: Foundation and Application. New Jersey: Prentice Hall.
Piegl, L.A. & Tiller, W. 1995. The NURBS Book.
Berlin, Germany: Springer.
Rogers, D.F. 2001. An Introduction to NURBS: With
Historical Perspective. USA: Academic Press.
Rozaimi Zakaria & Abd Fatah Wahab. 2012. Fuzzy B-spline
modeling of uncertainty data. Applied Mathematical Sciences 6(140):
6971-6991.
Salomon, D. 2006. Curves and Surfaces for Computer
Graphics. USA: Springer.
Yamaguchi, F. 1988. Curves and Surfaces in Computer Aided
Geometric Design. Germany: Springer-Verlag.
Zimmermann, H-J. 1985. Fuzzy Set Theory and Its
Applications. USA: Kluwer Academic.
*Corresponding
author; email: rozaimi_z@yahoo.com
|