Sains Malaysiana 43(5)(2014): 799–805

 

Pemodelan Titik Data Kabur Teritlak

(Generalized Fuzzy Data Point Modeling)

 

ROZAIMI ZAKARIA* & ABD. FATAH WAHAB

Jabatan Matematik, Fakulti Sains dan Teknologi, Universiti Malaysia Terengganu (UMT)

21030 Kuala Terengganu, Terengganu, Malaysia

 

Received: 25 January 2013/Accepted: 26 August 2013

 

ABSTRAK

Di dalam kertas ini, pendekatan dalam mentakrifkan ketakpastian titik data melalui pendekatan konsep nombor kabur yang sedia ada dapat diitlakkan. Pengitlakan ini termasuk pentakrifan ketakpastian data yang akan menjadi titik data kabur (titik kawalan kabur) selepas ditakrifkan oleh konsep nombor kabur. Kemudian, kajian ini juga membincangkan tentang proses pengkaburan (operasi potongan-alfa) terhadap titik data kabur tersebut dalam bentuk segitiga nombor kabur diiringi dengan beberapa teorem dan juga pembuktiannya. Selain itu, kami juga turut memodelkan titik data kabur tersebut melalui fungsi lengkung yang sedia ada iaitu fungsi lengkung Bezier. Selepas itu, turut dicadangkan juga ialah proses penyahkaburan terhadap titik data kabur selepas operasi potongan-alfa diimplementasikan bagi memperoleh penyelesaian titik data kabur rangup sebagai keputusan akhir yang turut dimodelkan melalui fungsi lengkung Bezier dengan disertai beberapa teorem bagi memahami bentuk data tersebut.

 

Kata kunci: Lengkung kabur; nombor kabur; operasi potongan-alfa; penyahkaburan; titik data kabur

 

ABSTRACT

In this paper, the approach in defining the uncertainty data points through the concept of the existing fuzzy numbers can be generalized. This generalization includes the defining uncertainty data which will become fuzzy data point (fuzzy control point) after being defined by the fuzzy numbers concepts. Then, this study also discusses the fuzzification process (alpha-cut operation) of the fuzzy data points in the form of triangular fuzzy numbers that was accompanied by some theorems and their proofs. In addition, we also model the fuzzy data points through the existing curve function of Bezier curve function. Then, we also proposed a defuzzification process which was applied towards the fuzzy data points after the fuzzification process to obtain crisp fuzzy data points solution as the final result which was being modeled by using the Bezier curve function jointly with some theorems for more understanding.

 

Keywords: Alpha-cut operation; defuzzification; fuzzy curve; fuzzy data points; fuzzy number

REFERENCES

Abbasbandy, S. 2001. Interpolation of fuzzy data by complete splines. Journal of Applied Mathematics and Computing 8(3): 587-594.

Abbasbandy, S. & Babolian, E. 1998. Interpolation of fuzzy data by natural splines. Journal of Applied Mathematics and Computing 5(2): 457-463.

Abbasbandy, S., Ezzati, R. & Behforooz, H. 2008. Interpolation of fuzzy data by using fuzzy splines. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16(1): 107-115.

Abd. Fatah Wahab, Jamaludin Md Ali, Ahmad Abd Majid & Abu Osman Md. Tap. 2010. Penyelesaian masalah data ketakpastian menggunakan Splin-B kabur. Sains Malaysiana 39(4): 661-670.

Abd. Fatah Wahab & Rozaimi Zakaria. 2012. Fuzzy interpolation rational cubic bezier curves modeling of blurring offline handwriting signature with different degree of blurring. Applied Mathematical Sciences 6(81): 4005-4016.

Abd. Fatah Wahab 2008. Pemodelan Geometri Menggunakan Teori Set Kabur. Universiti Sains Malaysia (tidak diterbitkan).

Abd. Fatah Wahab, Jamaluddin Md Ali & Ahmad Abd. Majid. 2009. Fuzzy geometric modeling. In Proceedings. International Conference on Computer Graphics, Imaging and Visualization, CGIV 2009.

Abd. Fatah Wahab, Jamaluddin Md Ali, Ahmad Abd. Majid & Md. Tap Abu Osman. 2004. Fuzzy set in geometric modeling. In Proceedings, International Conference on Computer Graphics, Imaging and Visualization, CGIV 2004.

Anile, A.M., Falcidieno, B., Gallo, G., Spagnuolo, M. & Spinello, S. 2000. Modeling uncertain data with fuzzy B-splines. Fuzzy Sets and Systems 113(3): 397-410.

Behforooz, H., Ezzati, R. & Abbasbandy, S. 2010. Interpolation of fuzzy data by using E(3) cubic splines. International Journal of Pure and Applied Mathematics 60(4): 383-392.

Dubois, D. & Prade, H. 1980. Fuzzy Sets and Systems: Theory and Applications. New York: Academic Press.

Farin, G., Hoschek, J. & Kim, M-S. 2002. Handbook of Computer Aided Geometric Design. The Netherlands: Elsevier Science B.V.

Farin, G. 2002. Curves and Surfaces for CAGD: A Practical Guide. 5th ed. USA: Academic Press.

Farin, G. 1999. NURBS for Curve and Surface Design: From Projective Geometry to Practical Use. 2nd ed. Massachusetts: AK Peters, Ltd.

Gallo, G. & Spagnuolo, M. 1998. Uncertainty coding and controlled data reduction using fuzzy-B-splines. In Proceedings Computer Graphics International, 22-26 June.

Gallo, G., Spagnuolo, M. & Spinello, S. 1998. Rainfall estimation from sparse data with fuzzy B-splines. Journal of Geographic Information and Decision Analysis 2(2): 194-203.

Gallo, G., Spagnuolo, M. & Spinello, S. 2000. Fuzzy B-splines: A surface model encapsulating uncertainty. Graphical Models 62(1): 40-55.

Klir, G.J. & Yuan, B. 1995. Fuzzy Sets and Fuzzy Logic: Theory and Application. New York: Prentice Hall.

Klir, G.J., Clair, U.S. & Yuan, B. 1997. Fuzzy Set Theory: Foundation and Application. New Jersey: Prentice Hall.

Piegl, L.A. & Tiller, W. 1995. The NURBS Book. Berlin, Germany: Springer.

Rogers, D.F. 2001. An Introduction to NURBS: With Historical Perspective. USA: Academic Press.

Rozaimi Zakaria & Abd Fatah Wahab. 2012. Fuzzy B-spline modeling of uncertainty data. Applied Mathematical Sciences 6(140): 6971-6991.

Salomon, D. 2006. Curves and Surfaces for Computer Graphics. USA: Springer.

Yamaguchi, F. 1988. Curves and Surfaces in Computer Aided Geometric Design. Germany: Springer-Verlag.

Zimmermann, H-J. 1985. Fuzzy Set Theory and Its Applications. USA: Kluwer Academic.

 

 

*Corresponding author; email: rozaimi_z@yahoo.com

 

 

previous