Sains Malaysiana 43(5)(2014):
791–798
Permodelan Termodinamik Aloi Al-Si-Cu untuk Pemprosesan Logam
Separa Pepejal
(Thermodynamic Modelling of Al-Si-Cu Alloys for Semisolid Metal
Processsing)
M.S. SALLEH*1 2, M.Z.
OMAR1, J.
SYARIF1& M.N.
MOHAMMED1
1Jabatan
Kejuruteraan Mekanik dan Bahan, Fakulti Kejuruteraan dan Alam Bina
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Jabatan
Kejuruteraan Proses Pembuatan, Fakulti Kejuruteraan Pembuatan
Universiti
Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka
Malaysia
Received: 15 January 2013/Accepted: 3 September 2013
ABSTRAK
Pembentukan-tikso merupakan teknologi baharu untuk menghasilkan produk
hampir siap dalam keadaan separa pepejal. Proses ini dapat mengurangkan
makropengasingan, keliangan serta memerlukan daya pembentukan yang
rendah. Sehingga kini, terdapat beberapa aloi aluminium seperti
gred A319, A356 dan A357 digunakan untuk pemprosesan logam separa
pepejal. Oleh itu, terdapat permintaan untuk mempelbagaikan aloi
aluminium daripada gred yang lain untuk pemprosesan logam separa
pepejal. Kajian ini membincangkan tentang permodelan termodinamik
untuk meramal perubahan sifat aloi aluminium gred A319 apabila kandungan
elemen pengaloian seperti tembaga, mangan dan ferum dipelbagaikan
agar memenuhi kriteria pemprosesan logam separa pepejal. Kesemua
pengiraan dalam kerja permodelan ini menggunakan perisian komersial
'Java-based Material Properties' (JMatPro). Pengiraan termodinamik
berdasarkan persamaan 'Scheil' digunakan untuk menentukan julat
suhu pemejalan (ΔT), kepekaan pecahan cecair (dfL/dT)
dan suhu tingkap pemprosesan (ΔT30/50). Daripada pengiraan termodinamik, didapati
suhu pemejalan aloi yang telah ditingkatkan %bt kandungan tembaga,
mangan dan ferum menurun daripada 130 kepada 113°C manakala
suhu eutektik meningkat daripada 510 kepada 515°C. Kepekaan
pecahan cecair pula berkurangan daripada 0.017 kepada 0.007°C-1 manakala suhu tingkap pemprosesan menurun
daripada 26 kepada 24°C. Tindak balas perduaan eutektik pula
berlaku antara 30 dan 50% pecahan cecair untuk kesemua kumpulan
aloi. Gambarajah fasa digunakan untuk mengetahui fasa sebatian antara
logam seperti β-Al5FeSi dan Al2Cu
yang terbentuk dalam aloi tersebut. Hasil daripada permodelan termodinamik
ini menunjukkan kesesuaian aloi yang dipelbagaikan % bt elemen tembaga,
mangan dan ferum digunakan untuk pemprosesan logam separa pepejal.
Kata kunci: Julat suhu pemejalan; kepekaan pecahan cecair;
pembentukan-tikso; pengiraan termodinamik; suhu tingkap pemprosesan
ABSTRACT
Thixoforming is a new technology in producing near net-shape products
in semisolid state. This process can reduce macrosegregation, porosity
and involve low forming forces. Currently, there are a few grades
of aluminum alloys such as A319, A356 and A357 commonly used in
semi-solid metal processing. Therefore, there is a demand to widen
the range of aluminum alloys specially tailored for semisolid metal
processing. This study discusses the thermodynamic modelling to
predict changes in the properties of aluminum alloy A319 expecially
when the content of alloying elements such as copper, manganese
and iron are varied in order to fulfill the criteria of semisolid
metal processing. All the calculations in the present work were
performed using Java-based Material Properties (JMatPro) commercial
software. Thermodynamic calculation based on Scheil's equation is
used to determine solidification temperature range (ΔT), liquid
fraction sensitivity (dfL/dT) and processing window
temperature (ΔT30/50). The thermodynamic
calculation shows that the solidification temperatures have decreased
from 130 to 113°C while the eutectic temperatures have increased
from 510 to 515°C when the wt.% of copper, manganese and ferum
were increased. The liquid fraction sensitivity is reduced from
0.017 to 0.007°C-1 and the processing window
temperature is reduced from 26 to 24°C. Eutectics binary reactions
occurred between 30 and 50% liquid fraction for all alloy groups.
Phase diagram is used to identify the formation of intermetallic
phase compound such as β-Al5FeSi
and Al2Cu
in the alloys. The results indicate the suitability of these modified
alloys as potential materials for semisolid processing.
Keywords: Liquid fraction
sensitivity; processing window temperature; solidification temperature range;
thermodynamic calculation; thixoforming
REFERENCES
Birol, Y. 2007. A357 thixoforming feedstock
produced by cooling slope casting. Journal of Materials Processing
Technology 186: 94-101.
Chang, K., Liu, S., Zhao, D., Du, Y., Zhou, L.
& Chen, L. 2011. Thermodynamic description of the Al-Cu-Mg-Mn-Si quinary
system and its application to solidification simulation. Thermochimica Acta 512:
258-267.
Camacho, A.M., Atkinson, H.V., Kapranos, P.
& Argent, B.B. 2003. Thermodynamic predictions of wrought alloy
compositions amenable to semi-solid processing. Acta Materialia 51:
2319-2330.
Fredriksson, H. & Akerlind, U. 2012. Solidification
and Crystallization Processing in Metals and Alloys. New York: John Wiley
& Sons Ltd.
Han, Q. & Viswanathan, S. 2004. The use of
thermodynamic simulation for the selection of hypoeutectic aluminium-silicon
alloys for semisolid metal processing. Materials Science and Engineering A 364:
48-54.
Liu, D., Atkinson, H.V. & Jones, H. 2005.
Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu
and Al-Si-Cu-Mg systems. Acta Materialia 53: 3807-3819.
Modigell, M. & Koke, J. 2001. Rheological
modelling on semi-solid alloys and simulation of thixocasting processes. Journal
of Materials Processing Technology 111: 53-58.
Omar, M.Z., Atkinson, P. & Kapranos, P.
2011. Thixotropy in semisolid steel slurries under rapid compression. Metallurgical
and Material Transaction A 42: 2807-2819.
Patel, J.B., Liu Y.Q., Shao, G. & Fan, Z.
2008. Rheo-processing of an alloy specifically designed for semisolid metal
processing based on the Al-Mg-Si system. Material Science Engineering A 476:
341-349.
Salleh, M.S., Omar, M.Z., Syarif, J. &
Mohammed, M.N. 2013. Thermodynamic simulation on thixoformability of aluminium
alloys for semi-solid processing. International Journal of Mathematics and
Computers in Simulation 7: 286-293.
Tzimas, E. & Zavaliangos, A. 1999. Materials
selection for semisolid processing. Materials and Manufacturing Processes 14(2):
217-230.
Yuan-dong, L., Apelian, D., Bo, X., Ying, M. & Yuan, H. 2010.
Commercial AM60 alloy for semisolid processing: Alloy optimization and
thermodynamic analysis. Transactions of Nonferrous Metals Society of China 20:
1572-1578.
*Corresponding
author; email: shukor@utem.edu.my
|