Sains Malaysiana 43(6)(2014):
833–842
Characteristics
of Nanostructured CaxZn(1-x)Al2O4
Thin Films Prepared by Sol-Gel Method
for GPS
Patch Antennas
(Ciri Filem
Nipis CaxZn(1-x)Al2O4 Berstruktur Nano yang Dihasilkan Melalui Kaedah
Sol-Gel
untuk GPS Tampalan Antena)
WAN NASARUDIN WAN
JALAL1, HUDA
ABDULLAH1*, MOHD
SYAFIQ
ZULFAKAR1, SAHBUDIN
SHAARI2, MOHAMMAD
THARIQUL
ISLAM3& BADARIAH BAIS1
1Department of Electrical, Electronic
and System Engineering, Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Institute
of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor, Malaysia
3The Institute of Space Science (ANGKASA),
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 28 March 2013/Accepted:
2 February 2014
ABSTRACT
CaxZn(1-x)Al2O4 thin
films (x = 0.00; 0.05; 0.10; 0.15 and 0.20) were prepared by sol-gel
method with the substitution of Zn2+ by
Ca2+ in the framework of ZnAl2O4.
The effect of Ca addition on the structure and morphology of CaZnAl2O4 thin
films was investigated by x-ray diffraction (XRD),
field-emission scanning electron microscope (FESEM),
energy-dispersive x-ray spectroscopy (EDX), ultra-violet visible (UV-Vis)
and atomic force microscope (AFM). The XRD patterns
showed the characteristic peaks of face-centred cubic (fcc) ZnAl2O4
and CaZnAl2O4. The addition of Ca increased
the crystallite size from 8.9 to 30.2 nm. The bandgap of CaxZn(1-x)Al2O4
thin film was found in the range of 3.40 to 3.84 eV. SEM micrograph
shows the morphology of all thin films is sphere-like, with the
grain size increased from 33 to 123 nm. The AFM images show the roughness
of surface morphology increased. The substitution of Zn2+ by
Ca2+ increased the crystallite size,
grain size and surface roughness which evidently increased the density
(4.59 to 4.64 g/cm3) and dielectric constant (8.48
to 9.54). The composition of
CaxZn(1-x)Al2O4 is
considered as suitable material for GPS patch antennas.
Keywords: Band gap; Ca-ZnAl2O4; GPS patch antena; nanostructures
ABSTRAK
Filem nipis CaxZn(1-x)Al2O4(x
= 0.00; 0.05; 0.10; 0.15 dan 0.20) telah dihasilkan dengan kaedah
sol-gel iaitu menggantikan Zn2+ dengan
Ca2+ di dalam bahan utama ZnAl2O4.
Kesan terhadap penambahan Ca pada struktur dan morfologi filem nipis
CaZnAl2O4 telah
dianalisis dengan menggunakan pembelauan sinar-x (XRD),
mikroskopi imbasan pancaran medan elektron (FESEM),
x-ray serakan tenaga spektroskopi (EDX), cahaya nampak ultra lembayung
(UV-Vis) dan mikroskopi daya atomik (AFM).
Corak pembelauan XRD menunjukkan ciri-ciri puncak berpusat
muka padu pada bahan ZnAl2O4 dan
CaZnAl2O4. Penambahan Ca telah meningkatkan
saiz kristal daripada 8.9 kepada 30.2 nm. Jalur tenaga bagi filem
nipis CaxZn(1-x)Al2O4 ialah
antara 3.40 hingga 3.84 eV. Graf mikro SEM menunjukkan morfologi bagi
kesemua filem nipis adalah berbentuk butiran dengan saiz butiran
meningkat daripada 33 kepada 123 nm. Imej AFM menunjukkan berlakunya peningkatan
pada permukaan morfologi CaxZn(1-x)Al2O4.
Penggantian Zn2+ dengan
Ca2+ telah meningkatkan saiz butiran dan peningkatan
kekasaran permukaan yang seterusnya memberi kesan terhadap ketumpatan
bahan (4.59 kepada 4.64 g/cm3) dan pemalar dielektrik (8.48
kepada 9.54). Komposisi CaxZn(1-x)Al2O4 dianggap
sebagai bahan yang sesuai untuk penghasilan GPS tampalan
antena.
Kata kunci: Ca-ZnAl2O4;
GPS tampalan antena;
jalurtenaga; strukturnano
REFERENCES
Barros, B.S., Melo, P.S.,
Kiminami, R.H.G.A., Costa, A.C.F.M., de Sa, G.F. & Alves Jr. S. 2006.
Photophysical properties of Eu3+ and Tb3+-doped ZnAl2O4 phosphors obtained by combustion reaction. Journal of Material Science 41:
4744-4748.
Bian, J.J., Yan, K. & Dong,
Y.F. 2008. Microwave dielectric properties of A1-3x/2 La x (Mg ½) 0 3 (A
= Ba, Sr, Ca; 0.0 < 0.05) double perovskites. Materials Science and
Engineering B – advanced Functional Solid-State Materials 147(1):
27-34.
Chatpong Bangbai, Krisana Chongsri,
Wisanu Pecharapa & Wicharn Techitdheera. 2013. Effect of Al and N doping on structural
and optical properties of sol-gel derived ZnO thin films. Sains
Malaysiana 42: 239-246.
Chen, Y-C. 2011. Microwave
dielectric properties of (Mg(1−x) Cox)2SnO4 ceramics for application in dual-band inverted-e-shaped monopole antenna. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58:
2531-2538.
Ciupina, V., Carazeanua, I. &
Prodan, G. 2004. Characterization of ZnAl2O4 nanocrystals
prepared by coprecipitation and microemulsion techniques. Journal of
Optoelectronics and Advanced Materials 6: 1317-1322.
de Souza, L.K.C., Zamian, J.R.,
da Rocha Filho, G.N., Soledad, L.E.B., dos Santos, I.M.G., Souza, A.G.,
Scheller, T., Angelica, R.S. & da Costa, C.E.F. 2009. Blue pigments based
on CoxZn1-xAl2O4 spinels synthesized by the polymeric
precursor method. Dyes and Pigments 81: 187-192.
Farley, N.R.S., Staddon, C.R.,
Zhao, L.X., Edmonds, K.W., Gallagher, B.L. & Gregory, D.H. 2003. New
sol-gel synthesis of ordered nanostructured doped ZnO films. J. App. Phys.
93: 1-8.
Fatemeh Davara & Masoud
Salavati-Niasaria. 2011. Synthesis and characterization of spinel- type zinc
aluminate nanoparticles by a modified sol-gel method using new precursor. Journal
of Alloys and Compounds 509: 2487-2492.
Fauzana, A.N., Azmi, B.Z., Sabri,
M.G.M., Wan Abdullah, W.R. & Hashim, M. 2013. Microstructural and nonlinear
electrical properties of ZnO ceramics with small amount of MnO2 dopant. Sains Malaysiana 42: 1139-1144.
Huang, C-L., Chen, J-Y. & Li,
B-J. 2009. Characterization and dielectric behavior of a new dielectric
ceramics Ca(Mg1/3Nb2/3)O3–(Ca0.8Sr0.2)TiO3 at microwave frequencies. J. of Alloys and Compounds 484: 494-497.
Huang, C-L., Chen, J-Y. &
Wang, Y-H. 2009. Microwave dielectric properties of (Mg0.95Co0.05)TiO3-(Na0.5Nd0.5)
TiO3 ceramic system. J. of Alloys and Compounds 478: 842-846.
Huang, C-L., Yang, T-J. & Huang,
C-C. 2009. Low dielectric l oss c eramics in the ZnAl2O4–TiO2
s ystem as a τf compensator. J. of the American Ceramic
Society 92: 119-124.
Hui Zhang, Liang, Fang, Elsebrock,
R. & Yuan, R.Z. 2005. Crystal structure and microwave dielectric
properties of a new A6B5O18-type
cation-deficient perovskite Ba3La3Ti4NbO18.
Materials Chemistry and Physics 93: 450-454.
Ianos, R., Lazau, R., Lazau, I.
& Pacurariu, C. 2011. Chemical oxidation of residual carbon from ZnAl2O4 powders prepared by combustion synthesis. 2012. J. of the European Ceramic
Society 32: 1605-1611.
Kingery, W., Bowen, H. & Uhlmann,
D. 1976. Introduction to Ceramics. John Willey & Son,
New York.
Koops, C.G. 1951. On the dispersion
of resistivity and dielectric constant of some semiconductors at
audio frequencies. Physics Review 81: 121-124.
Lei, W., Lu, W-Z., Wang, X-H., Liang,
F. & Wang, J. 2011. Phase composition and microwave dielectric
properties of ZnAl2O4-Co2TiO4
low-permittivity ceramics with high quality factor. J. of the
American Ceramic Society 94: 20-23.
Lei, W., Lu, W-Z., Liu, D. &
Zhu, J-H. 2009. Phase evolution and microwave dielectric properties
of (1-x)ZnAl2O4-x Mg2TiO4
ceramics. Journal of the American Ceramic Society 92: 105-109.
Muhammad E. Abdul Jamal, Sakthi
Kumar D. & Anantharaman, M.R. 2011. On structural, optical and dielectric
properties of z inc a luminate nanoparticles. Bull. Mater. Sci.34:
251-259.
Narang, S.B. & Shalini, B.
2010. Low loss dielectric ceramics for microwave applications: A review. Journal
of Ceramic Processing Research 11: 316-321.
Nikumbh, A.K. & Adhyapak,
P.V. 2010. Synthesis, properties and optimization of the rheologicalbehaviors
on alumina and zinc aluminate powders obtain from dicarboxylate precursors. Powder
Technology 202: 14-23.
Renata, F.M. & Osvaldo, A.S.
2010. Thin f ilm of ZnAl2O4: Eu3+ synthesized
by a non-alkoxide precursor sol-gel method. Journal of Brazil Chemistry
Society 21: 1395-1398.
Rodríguez, M.A., Aguilar, C.L.
& Aghayan, M.A. 2012. Solution combustion synthesis and sintering behavior
of CaAl2O4. Ceramics International 38: 395-399.
Saberi, A., Golestani-Fard, F.,
Sarpoolaky, H., Willert-Porada, M., Gerdes, T. & Simon, R. 2008. Chemical
synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate
combustion route. Journal of Alloy Compound 462: 142-146.
Sanchez, R.D., Saleta, M.E.,
Shapoval, O., Gehrke, K., Moshnyaga, V. & Samwer, K. 2010. Characterization
of geometrically frustrated Zn1-xMnxAl2O4 thin
films prepared by metalorganic aerosol deposition. Journal of Physics:
Conference Series 200: 1-4.
Sebastian, M.T. 2008. Dielectric
Materials for Wireless Communication. Jordan Hill, Oxford, UK: Elsevier
Ltd.
Subramanian, M.A., Shannon, R.D.,
Chai, B.H.T., Abraham, M.M. & Wintersgill, M.C. 1989. Dielectric constants of BeO, MgO,
and CaO using the two-terminal method. Phys. Chem. Minerals 16:
741-746.
Surendran, K.P., Santha, N.,
Mohanan, P. & Sebastian, M.T. 2004. Temperature stable low loss ceramic
dielectrics in (1-x) ZnAl2O4-xTiO2 system for
microwave substrate applications. The European Physical Journal B 41:
301-306.
Suresh K Sampath, D.G. Kanhere
& Ravindra Pandey. 1999. Electronic structure of spinel oxides: Zinc
aluminate and zinc gallate. J. Phys. Condens. Matter 11: 3635-3644.
Tawatchai Charinpanitkul, Pattama
Poommarin, Akkarat Wongkaew & Kim, K-S. 2009. Dependence of zinc aluminate
microscopic structure on its synthesis. Journal of Industrial and
Engineering Chemistry 15: 163-166.
Thinesh Kumar, R., Clament Sagaya
Selvam, N., Ragupathi, C., John Kennedy, L. & Judith Vijaya, J. 2012.
Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications. Powder Technology 224:
147-154.
Tian, X., Wan, L., Pan, K., Tian,
C., Fu, H. & Shi, K. 2009. Facile synthesis of mesoporous ZnAl2O4
thin films through the evaporation-induced self-assembly method.
Journal of Alloys and Compounds 488(1): 320-324.
Wagner, K.W. 1913. Zur theorie
der unvollkommenen dielektrika. Annalen der Physik 345:
817-855.
Wang, X.C., Lei, W. & Lu,
W.Z. 2009. Novel ZnAI204-based microwave dielectric
ceramics with machinable property and its application for GPS antenna. Ferroelectrics 388: 80-87.
Wood, D.L. & Tauc, J. 1972.
Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5:
3144-3151.
Wu, J-M., Lu, W-Z., Lei, W. &
Wang, X-C. 2011. Preparation of ZnAl2O4-based microwave dielectric ceramics and
GPS antenna by aqueous gelcasting. Materials Research Bulletin 46:
1485-1489.
Xavier, C.S., Sczancoski, J.C.,
Cavalcante, L.S., Paiva- Santos, C.O., Varela, J.A., Longo, E. & Li, M.S.
2009. A new processing method of CaZn2(OH)6.2H2O
powders: Photoluminescence and growth mechanism. Solid State Sciences 11:
2173-2179.
Ye, X., Wen, W.L. & Lu, W-Z.
2009. Microwave dielectric characteristics of Nb2O5-added
0.9Al2O3–0.1TiO2 ceramics. Ceramics
International 35: 2131-2134.
Zawadzki, M., Staszak, W.,
López-Suárez, F.E., Illán-Gómez, M.J. & Bueno-López, A. 2009. Preparation,
characterisation and catalytic performance for soot oxidation of
copper-containing ZnAl2O4 spinels. Applied Catalysis
A: General 371: 92-98.
Zhang, D., Wang, C., Liu, Y.,
Shi, Q., Wang, W. & Zhai, Y. 2012. Green and red photoluminescence from
ZnAl2O4: Mn phosphors prepared by sol-gel method. Journal
of Luminescence 132: 1529-1531.
*Corresponding
author; email: huda@vlsi.eng.ukm.edu.my
|