Sains Malaysiana 43(6)(2014):
827–832
Dimensional
and Structural Stability of Gamma Irradiated Stacked Die Quad Flat No Leads
(QFN)
(Kestabilan
Dimensi dan Struktur Dai Bertingkat Tanpa Kaki (QFN)
Tersinar Gamma)
SIEW PENG FOO, WAN YUSMAWATI WAN YUSOFF
& AZMAN JALAR*
Institute of
Microengineering and Nanoelectronics (IMEN),
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 18
March 2013/Accepted: 12 September 2013
ABSTRACT
The physical properties and structural
stability of the Quad Flat No-Leads (QFN)
package with different gamma radiation doses have been investigated.
The packages were irradiated with Co-60 gamma radiation with varying
doses of 5 Gy, 50 Gy, 500 Gy, 5 kGy and 50 kGy with operating dose
of 2.54 kGy/h at room temperature. The infinite focus microscope
(IFM) was used to measure the dimensional
change and slanting/warpage behaviour, while the 3D CT Scan
X-ray machine was used to determine the occurrence of deflection
on a wire in package due to exposure. It is believed that radiation
effect on ceramic filler in the epoxy mold compound (EMC) plays an important role to
induce the defects and resulted in swelling of the package. The
slanting/warpage behaviour is believed to be caused by the swelling
behaviour of ceramic filler and further induced structural stability.
The induced stress on the EMC structural after the dimensional change and slanting/warpage
failure leads to the occurrence of wire sweep. The finding suggests
that defect production in swelled ceramic filler leads to the occurrence
of dimensional and structure instability.
Keywords: Dimensional change; gamma
radiation; QFN; structure stability
ABSTRAK
Kestabilan sifat fizikal dan struktur
pakej cip tanpa kaki (QFN) dengan dos sinar gama yang
berbeza telah dikaji. Pakej diradiasikan dengan sinaran Co-60 gama
dengan pelbagai dos 5 Gy, 50 Gy, 500 Gy, 5 kGy, dan 50 kGy serta
dos operasi 2.54 kGy/jam pada suhu bilik. Mikroskop fokus infinit
(IFM)
telah digunakan untuk mengukur perubahan dimensi dan kelakuan serong/keledingan,
manakala mesin 3D CT sinar x telah digunakan untuk menentukan
berlakunya pesongan pada wayar di dalam pakej disebabkan oleh pendedahan.
Dipercayai bahawa kesan sinaran pada pengisi seramik dalam acuan
sebatian epoksi (EMC) memainkan peranan yang penting dalam
mendorong kecacatan dan menyebabkan pembengkakan pakej. Kelakuan
serong/keledingan dipercayai disebabkan oleh kelakuan pembengkakan
pengisi seramik dan seterusnya mendorong ketidakstabilan struktur.
Aruhan tegasan pada struktur EMC selepas perubahan dimensi dan kegagalan serong/keledingan
membawa kepada berlakunya pesongan wayar. Penemuan ini menunjukkan
bahawa penghasilan kecacatan dalam pembengkakan pengisi seramik
membawa kepada berlakunya dimensi dan struktur tidak stabil.
Kata kunci: Kestabilan struktur;
perubahan dimensi; QFN; sinar gama
REFERENCES
Abdullah,
S., Aziz, Z.A., Ahmad, I., Jalar, A. & Abdullah, M.F. 2008. Wire sweep
issue in a newly developed quad flat no-lead (QFN) semiconductor package. 7th
WSEAS International Conference on Microelectronics, Nanoelectronics,
Optoelectronics (MINO). pp. 40-44.
Ahmad,
I., Bachok, N.N., Chiang, N.C., Talib, M.Z.M., Rosle, M.F., Latip, F.L.A. &
Aziz, Z.A. 2007. Evaluation of different die attach film and epoxy pastes for
stacked die QFN package. IEEE 9th Electronic Packaging Technology Conference.
pp. 869-873.
Ardebili,
H. & Pecht, M.G. 2009. Chapter 2 plastic encapsulant materials. In Encapsulation
Technologies for Electronic Applications. A Volume in Materials and Processes
for Electronic Applications, edited by Ardebili, H. & Pecht, M.G. USA:
Elsevier Inc. pp. 47-127.
Chmielewski,
M. & Weglewski, W. 2013. Comparison of experimental and modelling results
of thermal properties in Cu-AlN composite materials. Buletin of the Polish Academy
of Sciences: Technical Sciences 61(2): 507-514.832
Chung. D.D.L.
1995. Low thermal expansion composite materials for electronic packaging. In Materials
for Electronic Packaging, edited by Deborah, D.L.C. USA: Butterworth-
Heinemann. pp. 145-146.
Gao, F., Weber,
W.J. & Devanathan, R. 2002. Defect production, multiple ion–solid
interactions and amorphization in SiC. Nuclear Instruments and Methods in
Physics Research 191: 487-496.
Huang, C.Y.
& Lin, Y.H. 2013. Applying CHAID algorithm to investigation the critical
attributes of void formation in QFN assembly. Soldering & Surface Mount
Technology 25(2): 117-127.
Hughes, A.E.
& Pooley, D. 1975. Interaction of solids with high energy radiation. In Real
Solids and Radiation, edited by Mott, S.N. & Noakes, G.R. London:
Wykeham Publications. pp. 98-105.
Iseki, T.,
Tezuka, M., Kim, C.S., Suzuki, T., Suematsu, H. & Yano, T. 1993. Hardening
by point defects in neutron irradiated AlN and SiC. Journal of Nuclear
Science and Technology 30(1): 68-77.
Kang, H.K. &
Kang, S.B. 2006. Thermal decomposition of silicon carbide in a plasma-sprayed
Cu/SiC composite deposit. Materials Science and Engineering A 428(1-2):
336-345.
Kinoshita, C.
2007. Microstructural evolution of irradiated ceramics. In Radiation Effects
in Solids, edited by Sickafus, K.E., Kotomin, E.A. & Uberuaga, B.P.
Netherlands: Springer. pp. 193-232.
Komori, S. &
Sakamoto, Y. 2009. Development trend of epoxy molding compound for
encapsulating semiconductor chips. In Materials for Advanced Packaging,
edited by Lu, D. & Wong, C.P. LLC: Springer. pp. 339-363.
Lemaignan, C.
2010. Nuclear materials and irradiation effects. In Handbook of Nuclear
Engineering, edited by Cacuci, D.G. US: Springer. pg. 544-641.
Rao, P.R., Wang,
X. & Theuwissen, A.J.P. 2008. Degradation of CMOS image sensors in
deep-submicron technology due to γ-irradiation. Solid-State Electronics 52: 1407-1413.
Weber, W.J.,
Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C.,
Matzke, H.J., Motte, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R. &
Zinkle, S.J. 1998. Radiation effects in crystalline ceramics for the
immobilization of high-level nuclear waste and plutonium. Journal of
Materials Research 3(6): 1434-1484.
Yusoff, W.Y.W.,
Jalar, A., Othman, N.K. & Rahman, I.A. 2011. Effect of gamma-irradiation
towards stress-strain curve of single die QFN package. Material Science
Forum (694): 620-624.
Zinkle, S.J.
& Kinoshita, C. 1997. Defect production in ceramics. Journal of Nuclear
Materials 251: 200-217.
*Corresponding author; email: azmn@ukm.edu.my
|