Sains Malaysiana 43(6)(2014):
867–875
First Principles Investigations of
Electronic, Photoluminescence and Charge Transfer Properties of the
Naphtho[2,1-b:6,5-b′]difuran and Its Derivatives for OFET
(Prinsip Pertama Kajian Elektronik,
Fotopendarkilau dan Ciri Pemindahan Cas Nafto
[2,1-b :6,5-b ‘] difuran dan
Terbitannya untuk OFET)
AIJAZ RASOOL
CHAUDHRY13, R. AHMED1*, AHMAD IRFAN4, A. SHAARI1, HASMERYA
MAAROF2& ABDULLAH
G. AL-SEHEMI456
1Department of Physics, Faculty of Science,
Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor, Malaysia
2Department of Chemistry, Faculty of Science,
Universiti Teknologi Malaysia, UTM Skudai,
81310 Johor, Malaysia
3Department of Physics, Faculty of Science,
King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
4Department of Chemistry, Faculty of Science,
King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
5Unit of Science and Technology, Faculty
of Science, King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
6Center of Excellence for Advanced
Materials Research, King Khalid University, Abha 61413
P.O. Box 9004, Saudi Arabia
Received: 1 April 2013/Accepted: 17
December 2013
ABSTRACT
We have designed new derivatives of
naphtha [2,1-b:6,5-b′] difuran as DPNDF-CN1 and
DPNDF-CN2. The molecular structures
of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2
have been optimized at the ground (S0)
and first excited (S1) states
using density functional theory (DFT)
and time-dependent density functional theory (TD-DFT),
respectively. Then the highest occupied molecular orbitals (HOMOs),
the lowest unoccupied molecular orbitals (LUMOs),
photoluminescence properties, electron affinities (EAs),
reorganization energies (λs) and ionization potentials (IPs)
have been investigated. The balanced λ(h) and λ(e) showed
that DPNDF, DPNDF-CN1
and DPNDF-CN2 would
be better charge transport materials for both hole and electron.
The effect of attached acceptors on the geometrical parameters,
electronic, optical and charge transfer properties have also been
investigated.
Keywords: Computer modeling and simulation;
electronic materials; first principle calculations; organic semiconductors;
photoluminescence
ABSTRAK
Kami telah mereka bentuk terbitan baru
nafta [2,1-b :6,5-b′] difuran sebagai DPNDF-CN1
dan DPNDF-CN2.
Struktur molekul DPNDF,
terbitannya DPNDF-CN1 dan DPNDF-CN2 telah dioptimumkan pada
keadaan asas (S0) dan
teruja pertama (S1) masing-masing
dinyatakan menggunakan teori ketumpatan berfungsi (DFT) dan teori ketumpatan berfungsi
bersandarkan masa (TD-DFT).
Maka orbital molekul berisi tertinggi (HOMOs),
orbital molekul tak berisi terendah (LUMOs),
ciri-ciri fotopendarkilau, kesamaan elektron (EA),
tenaga penyusunan semula (λs) dan keupayaan pengionan (IP)
telah dikaji. λ(h) dan λ(e) yang seimbang menunjukkan
bahawa DPNDF, DPNDF-CN1
dan DPNDF-CN2 merupakan
bahan-bahan angkutan cas yang baik untuk kedua-dua lohong dan elektron.
Kesan pengepilan penerima ke atas parameter geometri, sifat pemindahan
elektronik, optik dan cas juga telah dikaji.
Kata
kunci: Bahan-bahan elektronik; fotopendarkilau; pemodelan komputer
dan simulasi; prinsip pertama penyiasatan; semikonduktor organik
REFERENCES
Bauernschmitt,
R. & Ahlrichs, R. 1996. Treatment of electronic excitations within the
adiabatic approximation of time dependent density functional theory. Chem.
Phys. Lett. 256(4-5): 454-464.
Becke, A.D.
1993. Density-functional thermochemistry. III. The role of exact exchange. J.
Chem. Phys. 98(7): 5648-5652.
Brédas,
J.L., Beljonne, D., Coropceanu, V. & Cornil, J. 2004. Charge-transfer and
energy-transfer processes in Π-conjugated oligomers and polymers: A
molecular picture. Chem. Rev. 104(11): 4971-5004.
Brédas,
J.L., Cornil, J., Beljonne, D., dos Santos, D.A. & Shuai, Z. 1999.
Excited-state electronic structure of conjugated oligomers and polymers: A
quantum-chemical approach to optical phenomena. Acc. Chem. Res. 32(3):
267-276.
Brédas,
J.L., Calbert, J.P., da Silva Filho, D.A. & Cornil, J. 2002. Organic
semiconductors: A theoretical characterization of the basic parameters
governing charge transport. Proc. Natl. Acad. Sci. 99(9): 5804-5809.
Bredas, J.L.
& Street, G.B. 1985. Polarons, bipolarons, and solitons in conducting
polymers. Acc. Chem. Res. 18(10): 309-315.
Buonocore,
F. & Matteo, A. 2009. Energetic of molecular interface at metal-organic
heterojunction: The case of thiophenethiolate chemisorbed on Au(111). Theor.
Chem. Acc. 124(3-4): 217-223.
Chaudhry,
A.R., Ahmed, R., Irfan, A., Shaari, A. & Al-Sehemi, A.G. 2013. Quantum
chemical approach toward the electronic, photophysical and charge transfer
properties of the materials used in organic eield-effect transistors. Mater.
Chem. Phys. 138(2-3): 468-478.
Cho, E.,
Risko, C., Kim, D., Gysel, R., Cates Miller, N., Breiby, D.W., McGehee, M.D.,
Toney, M.F., Kline, R.J. & Bredas, J.-L. 2012. Three-dimensional packing
structure and electronic properties of biaxially oriented poly(2,5-Bis(3-
Alkylthiophene-2-Yl)Thieno[3,2-B]Thiophene) films. J. Am. Chem. Soc. 134(14):
6177-6190.
Cornil, J.,
dos Santos, D.A., Crispin, X., Silbey, R. & Brédas, J.L. 1998. Influence of
interchain interactions on the absorption and luminescence of conjugated
oligomers and polymers: A quantum-chemical characterization. J. Am. Chem.
Soc. 120(6): 1289-1299.
Coropceanu,
V., Nakano, T., Gruhn, N.E., Kwon, O., Yade, T., Katsukawa, K.-i. & Brédas,
J.-L. 2006. Probing charge transport in Π-stacked fluorene-based systems. J.
Phys. Chem. B 110(19): 9482-9487.
Das, S.,
Senanayak, S.P., Bedi, A., Narayan, K.S. & Zade, S.S. 2011. Synthesis and
charge carrier mobility of a solution-processable conjugated copolymer based on
cyclopenta[C] Thiophene. Polymer 52(25): 5780-5787.
Distefano,
G., Jones, D., Guerra, M., Favaretto, L., Modelli, A. & Mengoli, G. 1991.
Determination of the electronic structure of oligofurans and extrapolation to
polyfuran. J. Phys. Chem. 95(24): 9746-9753.
E. Katz, H.
1997. Organic molecular solids as thin film transistor semiconductors. J.
Mater. Chem. 7(3): 369-376.
Frisch, M.,
Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani,
G., Barone, V., Mennucci, B. & Petersson, G. 2009. Gaussian 09, Revision A.
02, Gaussian. Inc., Wallingford, CT 270(271.
Furche, F.
& Ahlrichs, R. 2002. Adiabatic time-dependent density functional methods
for excited state properties. J. Chem. Phys. 117(16): 7433-7447.
Gidron, O.,
Dadvand, A., Sheynin, Y., Bendikov, M. & Perepichka, D.F. 2011. Towards
“Green” electronic materials. α-oligofurans as semiconductors. Chem.
Commun. 47(7): 1976-1978.
Gruhn, N.E.,
da Silva Filho, D.A., Bill, T.G., Malagoli, M., Coropceanu, V., Kahn, A. &
Brédas, J.L. 2002. The vibrational reorganization energy in pentacene:
Molecular influences on charge transport. J. Am. Chem. Soc. 124(27):
7918-7919.
Ho, P.K.H.,
Kim, J.S., Burroughes, J.H., Becker, H., Li, S.F.Y., Brown, T.M., Cacialli, F.
& Friend, R.H. 2000. Molecular-scale interface engineering for polymer
light-emitting diodes. Nature 404(6777): 481-484.
Hofmann,
A.W. 1856. On insolinic acid. Proc. R. Soc. Lond. 8(1): 1-3.
Horowitz, G.
& Hajlaoui, M.E. 2000. Mobility in polycrystalline oligothiophene
field-effect transistors dependent on grain size. Adv. Mater. 12(14):
1046-1050.
Irfan, A.,
Al-Sehemi, A.G., Muhammad, S. & Zhang, J. 2011a. Packing effect
on the transfer integrals and mobility in α,α′-Bis(Dithieno[3,2-B:2′,3′-D]Thiophene)
(Bdt) and its heteroatom-substituted analogues. Aust. J. Chem.
64(12): 1587-1592.
Irfan, A.,
Nadeem, M., Athar, M., Kanwal, F. & Zhang, J. 2011b. Electronic, optical
and charge transfer properties of
α,α′-Bis(Dithieno[3,2-B:2′,3′- D]Thiophene) (Bdt)
and its heteroatom-substituted analogues. Comput. Theor. Chem. 968(1-3):
8-11.
Irfan, A.,
Zhang, J. & Chang, Y. 2010. Theoretical investigations of the charge
transfer properties of anthracene derivatives. Theor. Chem. Acc. 127(5-6):
587-594.
Irfan, A.,
Cui, R. & Zhang, J. 2009. Fluorinated derivatives of Mer-Alq3:
Energy decomposition analysis, optical properties, and charge transfer
study. Theor. Chem. Acc. 122(5-6): 275-281.
IUPAC. 1997.
Compendium of Chemical Terminology (the Gold Book). 2nd ed.
Compiled by Mcnaught, A.D. & Wilkinson, A. Oxford: Blackwell
Scientific Publications.
Koezuka, H.,
Tsumura, A. & Ando, T. 1987. Field-effect transistor with polythiophene
thin film. Synth. Met. 18(1-3): 699-704.
Lee, C.,
Yang, W. & Parr, R.G. 1988. Development of the Colle- Salvetti
correlation-energy formula into a functional of the electron density. Phys.
Rev. B 37(2): 785-789.
Lee, J.E.,
Choi, G.C., Park, N.G., Ha, Y.K. & Kim, Y.S. 2004. Elucidation of the
structure of a highly efficient blue emitting lithium boron 2-(2-Hydroxyphenyl)
benzoxazole. Curr. Appl. Phys. 4(6): 675-678.
Letizia,
J.A., Cronin, S., Ortiz, R.P., Facchetti, A., Ratner, M.A. & Marks, T.J.
2010. Phenacyl–Thiophene and quinone semiconductors designed for solution
processability and air-stability in high mobility N-channel field-effect
transistors. Chem. - A Eur. J. 16(6): 1911-1928.
Li, E., Kim,
A. & Zhang, L. 2007. Modeling excited states of fluorescent compounds with
Uv-Vis spectra calculations. Comp. Chem. Moodle. 1(1): 01- 07.
Marcus, R.A.
1993. Electron transfer reactions in chemistry: Theory and experiment. Rev.
Mod. Phys. 65(3): 599-610.
Mitsui, C.,
Soeda, J., Miwa, K., Tsuji, H., Takeya, J. & Nakamura, E. 2012.
Naphtho[2,1-B:6,5-B′]Difuran: A versatile motif available for
solution-processed single-crystal organic field-effect transistors with high
hole mobility. J. Am. Chem. Soc. 134(12): 5448-5451.
Miyata, Y.,
Nishinaga, T. & Komatsu, K. 2005. Synthesis and structural, electronic, and
optical properties of oligo(Thienylfuran)S in comparison with oligothiophenes
and oligofurans. J. Org. Chem. 70(4): 1147-1153.
Miyata, Y.,
Terayama, M., Minari, T., Nishinaga, T., Nemoto, T., Isoda, S. & Komatsu,
K. 2007. Synthesis of oligo(Thienylfuran)S with thiophene rings at both ends
and their structural, electronic, and field-effect properties. Chem. - An
Asian J. 2(12): 1492-1504.
Mohakud, S.,
Alex, A.P. & Pati, S.K. 2010. Ambipolar charge transport in
α-Oligofurans: A theoretical study. J. Phys. Chem. C 114(48):
20436-20442.
Newman,
C.R., Frisbie, C.D., da Silva Filho, D.A., Brédas, J.L., Ewbank, P.C. &
Mann, K.R. 2004. Introduction to organic thin film transistors and design of
n-channel organic semiconductors. Chem. Mater. 16(23): 4436-4451.
Padinger,
F., Rittberger, R.S. & Sariciftci, N.S. 2003. Effects of postproduction
treatment on plastic solar cells. Adv. Funct. Mater. 13(1): 85-88.
Pingel, P.,
Zen, A., Neher, D., Lieberwirth, I., Wegner, G., Allard, S. & Scherf, U.
2009. Unexpectedly high field-effect mobility of a soluble, low molecular
weight oligoquaterthiophene fraction with low polydispersity. Appl. Phys. A 95(1):
67-72.
Reimers,
J.R. 2001. A practical method for the use of curvilinear coordinates in
calculations of normal-mode-projected displacements and Duschinsky rotation
matrices for large molecules. J. Chem. Phys. 115(20): 9103-9109.
Sajoto,
T., Tiwari, S.P., Li, H., Risko, C., Barlow, S., Zhang, Q., Cho, J.Y., Brédas,
J.L., Kippelen, B. & Marder, S.R. 2012. Synthesis and characterization of
naphthalene diimide/ Diethynylbenzene copolymers. Polymer 53(5):
1072-1078.
Scalmani, G., Frisch, M.J., Mennucci, B.,
Tomasi, J., Cammi, R. & Barone, V. 2006. Geometries and properties of
excited states in the gas phase and in solution: Theory and application of a
time-dependent density functional theory polarizable continuum model. J.
Chem. Phys. 124(9): 094107-094115.
Schleyer, P.v.R. 2005. Introduction:
Delocalizationpi and sigma. Chem. Rev. 105(10): 3433-3435.
Shinamura, S., Osaka, I., Miyazaki, E.,
Nakao, A., Yamagishi, M., Takeya, J. & Takimiya, K. 2011. Linear- and
angular-shaped naphthodithiophenes: Selective synthesis, properties, and
application to organic field-effect transistors. J. Am. Chem. Soc. 133(13):
5024-5035.
Stephens, P.J., Devlin, F.J.,
Chabalowski, C.F. & Frisch, M.J. 1994. Ab initio calculation of
vibrational absorption and circular dichroism spectra using density functional
force fields. J. Phys. Chem. 98(45): 11623-11627.
Tang, C.W. & VanSlyke, S.A. 1987.
Organic electroluminescent diodes. Appl. Phys. Lett. 51(12): 913-915.
Tsumura, A., Koezuka, H. & Ando, T.
1986. Macromolecular electronic device: Field-effect transistor with a
polythiophene thin film. Appl. Phys. Lett. 49(18): 1210-1212.
Unni, K.N.N., Dabos-Seignon, S. &
Nunzi, J.M. 2006. Influence of the polymer dielectric characteristics on the
performance of a quaterthiophene organic field-effect transistor. J. Mater.
Sci. 41(2): 317-322.
Van Caillie, C. & Amos, R.D. 2000.
Geometric derivatives of density functional theory excitation energies using
gradient-corrected functionals. Chem. Phys. Lett. 317(1-2): 159-164.
Warshel, A. & Karplus, M. 1974.
Calculation of Pi-Pi excited state conformations and vibronic structure of
retinal and related molecules. J. Am. Chem. Soc. 96(18): 5677-5689.
Wrackmeyer, M.S., Hein, M., Petrich, A.,
Meiss, J., Hummert, M., Riede, M.K. & Leo, K. 2011. Dicyanovinyl
substituted oligothiophenes: Thermal stability, mobility measurements,
and performance in photovoltaic devices. Sol. Energy Mater. Sol.
Cells 95(12): 3171-3175.
Wu, Q.X., Geng, Y., Liao, Y., Tang, X.D.,
Yang, G.C. & Su, Z.M. 2012. Theoretical studies of the effect of
electron-withdrawing dicyanovinyl group on the electronic and charge-transport
properties of fluorene-thiophene oligomers. Theor. Chem. Acc. 131(3):
1-9.
Wu, C.C., Hung, W.Y., Liu, T.L., Zhang,
L.Z. & Luh, T.Y. 2003. Hole-transport properties of a furan-containing
oligoaryl. J. Appl. Phys. 93(9): 5465-5471.
Yang, S.C., Graupner, W., Guha, S., Puschnig,
P., Martin, C., Chandrasekhar, H.R., Chandrasekhar, M., Leising,
G., Ambrosch-Draxl, C. & Scherf, U. 2000. Geometry-dependent
electronic properties of highly fluorescent conjugated molecules.
Phys. Rev. Lett. 85(11): 2388-2391.
Zhang, Y., Cai, X., Bian, Y., Li, X.
& Jiang, J. 2008. Heteroatom substitution of oligothienoacenes: From good
P-type semiconductors to good ambipolar semiconductors for organic field-effect
transistors. J. Phys. Chem. C 112(13): 5148-5159.
Zwier, M.C., Shorb, J.M. & Krueger,
B.P. 2007. Hybrid molecular dynamics-quantum mechanics simulations of solute
spectral properties in the condensed phase: Evaluation of simulation
parameters. J. Comput. Chem. 28(9): 1572-1581.
*Corresponding author; email: rashidahmed@utm.my
|