Sains Malaysiana 43(6)(2014): 867–875

 

First Principles Investigations of Electronic, Photoluminescence and Charge Transfer Properties of the Naphtho[2,1-b:6,5-b′]difuran and Its Derivatives for OFET

(Prinsip Pertama Kajian Elektronik, Fotopendarkilau dan Ciri Pemindahan Cas Nafto

[2,1-b :6,5-b ‘] difuran dan Terbitannya untuk OFET)

 

 

AIJAZ RASOOL CHAUDHRY13, R. AHMED1*, AHMAD IRFAN4, A. SHAARI1, HASMERYA MAAROF2& ABDULLAH G. AL-SEHEMI456

 

1Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor, Malaysia

 

2Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai,

81310 Johor, Malaysia

 

3Department of Physics, Faculty of Science, King Khalid University, Abha 61413

P.O. Box 9004, Saudi Arabia

 

4Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413

P.O. Box 9004, Saudi Arabia

 

5Unit of Science and Technology, Faculty of Science, King Khalid University, Abha 61413

P.O. Box 9004, Saudi Arabia

6Center of Excellence for Advanced Materials Research, King Khalid University, Abha 61413

P.O. Box 9004, Saudi Arabia

 

Received: 1 April 2013/Accepted: 17 December 2013

 

ABSTRACT

We have designed new derivatives of naphtha [2,1-b:6,5-b] difuran as DPNDF-CN1 and DPNDF-CN2. The molecular structures of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2 have been optimized at the ground (S0) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), photoluminescence properties, electron affinities (EAs), reorganization energies (λs) and ionization potentials (IPs) have been investigated. The balanced λ(h) and λ(e) showed that DPNDF, DPNDF-CN1 and DPNDF-CN2 would be better charge transport materials for both hole and electron. The effect of attached acceptors on the geometrical parameters, electronic, optical and charge transfer properties have also been investigated.

 

Keywords: Computer modeling and simulation; electronic materials; first principle calculations; organic semiconductors; photoluminescence

 

ABSTRAK

Kami telah mereka bentuk terbitan baru nafta [2,1-b :6,5-b] difuran sebagai DPNDF-CN1 dan DPNDF-CN2. Struktur molekul DPNDF, terbitannya DPNDF-CN1 dan DPNDF-CN2 telah dioptimumkan pada keadaan asas (S0) dan teruja pertama (S1) masing-masing dinyatakan menggunakan teori ketumpatan berfungsi (DFT) dan teori ketumpatan berfungsi bersandarkan masa (TD-DFT). Maka orbital molekul berisi tertinggi (HOMOs), orbital molekul tak berisi terendah (LUMOs), ciri-ciri fotopendarkilau, kesamaan elektron (EA), tenaga penyusunan semula (λs) dan keupayaan pengionan (IP) telah dikaji. λ(h) dan λ(e) yang seimbang menunjukkan bahawa DPNDF, DPNDF-CN1 dan DPNDF-CN2 merupakan bahan-bahan angkutan cas yang baik untuk kedua-dua lohong dan elektron. Kesan pengepilan penerima ke atas parameter geometri, sifat pemindahan elektronik, optik dan cas juga telah dikaji.

 

Kata kunci: Bahan-bahan elektronik; fotopendarkilau; pemodelan komputer dan simulasi; prinsip pertama penyiasatan; semikonduktor organik

REFERENCES

Bauernschmitt, R. & Ahlrichs, R. 1996. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256(4-5): 454-464.

Becke, A.D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7): 5648-5652.

Brédas, J.L., Beljonne, D., Coropceanu, V. & Cornil, J. 2004. Charge-transfer and energy-transfer processes in Π-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 104(11): 4971-5004.

Brédas, J.L., Cornil, J., Beljonne, D., dos Santos, D.A. & Shuai, Z. 1999. Excited-state electronic structure of conjugated oligomers and polymers: A quantum-chemical approach to optical phenomena. Acc. Chem. Res. 32(3): 267-276.

Brédas, J.L., Calbert, J.P., da Silva Filho, D.A. & Cornil, J. 2002. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. 99(9): 5804-5809.

Bredas, J.L. & Street, G.B. 1985. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18(10): 309-315.

Buonocore, F. & Matteo, A. 2009. Energetic of molecular interface at metal-organic heterojunction: The case of thiophenethiolate chemisorbed on Au(111). Theor. Chem. Acc. 124(3-4): 217-223.

Chaudhry, A.R., Ahmed, R., Irfan, A., Shaari, A. & Al-Sehemi, A.G. 2013. Quantum chemical approach toward the electronic, photophysical and charge transfer properties of the materials used in organic eield-effect transistors. Mater. Chem. Phys. 138(2-3): 468-478.

Cho, E., Risko, C., Kim, D., Gysel, R., Cates Miller, N., Breiby, D.W., McGehee, M.D., Toney, M.F., Kline, R.J. & Bredas, J.-L. 2012. Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-Bis(3- Alkylthiophene-2-Yl)Thieno[3,2-B]Thiophene) films. J. Am. Chem. Soc. 134(14): 6177-6190.

Cornil, J., dos Santos, D.A., Crispin, X., Silbey, R. & Brédas, J.L. 1998. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: A quantum-chemical characterization. J. Am. Chem. Soc. 120(6): 1289-1299.

Coropceanu, V., Nakano, T., Gruhn, N.E., Kwon, O., Yade, T., Katsukawa, K.-i. & Brédas, J.-L. 2006. Probing charge transport in Π-stacked fluorene-based systems. J. Phys. Chem. B 110(19): 9482-9487.

Das, S., Senanayak, S.P., Bedi, A., Narayan, K.S. & Zade, S.S. 2011. Synthesis and charge carrier mobility of a solution-processable conjugated copolymer based on cyclopenta[C] Thiophene. Polymer 52(25): 5780-5787.

Distefano, G., Jones, D., Guerra, M., Favaretto, L., Modelli, A. & Mengoli, G. 1991. Determination of the electronic structure of oligofurans and extrapolation to polyfuran. J. Phys. Chem. 95(24): 9746-9753.

E. Katz, H. 1997. Organic molecular solids as thin film transistor semiconductors. J. Mater. Chem. 7(3): 369-376.

Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B. & Petersson, G. 2009. Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT 270(271.

Furche, F. & Ahlrichs, R. 2002. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117(16): 7433-7447.

Gidron, O., Dadvand, A., Sheynin, Y., Bendikov, M. & Perepichka, D.F. 2011. Towards “Green” electronic materials. α-oligofurans as semiconductors. Chem. Commun. 47(7): 1976-1978.

Gruhn, N.E., da Silva Filho, D.A., Bill, T.G., Malagoli, M., Coropceanu, V., Kahn, A. & Brédas, J.L. 2002. The vibrational reorganization energy in pentacene: Molecular influences on charge transport. J. Am. Chem. Soc. 124(27): 7918-7919.

Ho, P.K.H., Kim, J.S., Burroughes, J.H., Becker, H., Li, S.F.Y., Brown, T.M., Cacialli, F. & Friend, R.H. 2000. Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404(6777): 481-484.

Hofmann, A.W. 1856. On insolinic acid. Proc. R. Soc. Lond. 8(1): 1-3.

Horowitz, G. & Hajlaoui, M.E. 2000. Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv. Mater. 12(14): 1046-1050.

Irfan, A., Al-Sehemi, A.G., Muhammad, S. & Zhang, J. 2011a. Packing effect on the transfer integrals and mobility in α,α′-Bis(Dithieno[3,2-B:2′,3′-D]Thiophene) (Bdt) and its heteroatom-substituted analogues. Aust. J. Chem. 64(12): 1587-1592.

Irfan, A., Nadeem, M., Athar, M., Kanwal, F. & Zhang, J. 2011b. Electronic, optical and charge transfer properties of α,α′-Bis(Dithieno[3,2-B:2′,3′- D]Thiophene) (Bdt) and its heteroatom-substituted analogues. Comput. Theor. Chem. 968(1-3): 8-11.

Irfan, A., Zhang, J. & Chang, Y. 2010. Theoretical investigations of the charge transfer properties of anthracene derivatives. Theor. Chem. Acc. 127(5-6): 587-594.

Irfan, A., Cui, R. & Zhang, J. 2009. Fluorinated derivatives of Mer-Alq3: Energy decomposition analysis, optical properties, and charge transfer study. Theor. Chem. Acc. 122(5-6): 275-281.

IUPAC. 1997. Compendium of Chemical Terminology (the Gold Book). 2nd ed. Compiled by Mcnaught, A.D. & Wilkinson, A. Oxford: Blackwell Scientific Publications.

Koezuka, H., Tsumura, A. & Ando, T. 1987. Field-effect transistor with polythiophene thin film. Synth. Met. 18(1-3): 699-704.

Lee, C., Yang, W. & Parr, R.G. 1988. Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2): 785-789.

Lee, J.E., Choi, G.C., Park, N.G., Ha, Y.K. & Kim, Y.S. 2004. Elucidation of the structure of a highly efficient blue emitting lithium boron 2-(2-Hydroxyphenyl) benzoxazole. Curr. Appl. Phys. 4(6): 675-678.

Letizia, J.A., Cronin, S., Ortiz, R.P., Facchetti, A., Ratner, M.A. & Marks, T.J. 2010. Phenacyl–Thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility N-channel field-effect transistors. Chem. - A Eur. J. 16(6): 1911-1928.

Li, E., Kim, A. & Zhang, L. 2007. Modeling excited states of fluorescent compounds with Uv-Vis spectra calculations. Comp. Chem. Moodle. 1(1): 01- 07.

Marcus, R.A. 1993. Electron transfer reactions in chemistry: Theory and experiment. Rev. Mod. Phys. 65(3): 599-610.

Mitsui, C., Soeda, J., Miwa, K., Tsuji, H., Takeya, J. & Nakamura, E. 2012. Naphtho[2,1-B:6,5-B′]Difuran: A versatile motif available for solution-processed single-crystal organic field-effect transistors with high hole mobility. J. Am. Chem. Soc. 134(12): 5448-5451.

Miyata, Y., Nishinaga, T. & Komatsu, K. 2005. Synthesis and structural, electronic, and optical properties of oligo(Thienylfuran)S in comparison with oligothiophenes and oligofurans. J. Org. Chem. 70(4): 1147-1153.

Miyata, Y., Terayama, M., Minari, T., Nishinaga, T., Nemoto, T., Isoda, S. & Komatsu, K. 2007. Synthesis of oligo(Thienylfuran)S with thiophene rings at both ends and their structural, electronic, and field-effect properties. Chem. - An Asian J. 2(12): 1492-1504.

Mohakud, S., Alex, A.P. & Pati, S.K. 2010. Ambipolar charge transport in α-Oligofurans: A theoretical study. J. Phys. Chem. C 114(48): 20436-20442.

Newman, C.R., Frisbie, C.D., da Silva Filho, D.A., Brédas, J.L., Ewbank, P.C. & Mann, K.R. 2004. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16(23): 4436-4451.

Padinger, F., Rittberger, R.S. & Sariciftci, N.S. 2003. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13(1): 85-88.

Pingel, P., Zen, A., Neher, D., Lieberwirth, I., Wegner, G., Allard, S. & Scherf, U. 2009. Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity. Appl. Phys. A 95(1): 67-72.

Reimers, J.R. 2001. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J. Chem. Phys. 115(20): 9103-9109.

Sajoto, T., Tiwari, S.P., Li, H., Risko, C., Barlow, S., Zhang, Q., Cho, J.Y., Brédas, J.L., Kippelen, B. & Marder, S.R. 2012. Synthesis and characterization of naphthalene diimide/ Diethynylbenzene copolymers. Polymer 53(5): 1072-1078.

Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R. & Barone, V. 2006. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 124(9): 094107-094115.

Schleyer, P.v.R. 2005. Introduction: Delocalizationpi and sigma. Chem. Rev. 105(10): 3433-3435.

Shinamura, S., Osaka, I., Miyazaki, E., Nakao, A., Yamagishi, M., Takeya, J. & Takimiya, K. 2011. Linear- and angular-shaped naphthodithiophenes: Selective synthesis, properties, and application to organic field-effect transistors. J. Am. Chem. Soc. 133(13): 5024-5035.

Stephens, P.J., Devlin, F.J., Chabalowski, C.F. & Frisch, M.J. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45): 11623-11627.

Tang, C.W. & VanSlyke, S.A. 1987. Organic electroluminescent diodes. Appl. Phys. Lett. 51(12): 913-915.

Tsumura, A., Koezuka, H. & Ando, T. 1986. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49(18): 1210-1212.

Unni, K.N.N., Dabos-Seignon, S. & Nunzi, J.M. 2006. Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J. Mater. Sci. 41(2): 317-322.

Van Caillie, C. & Amos, R.D. 2000. Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chem. Phys. Lett. 317(1-2): 159-164.

Warshel, A. & Karplus, M. 1974. Calculation of Pi-Pi excited state conformations and vibronic structure of retinal and related molecules. J. Am. Chem. Soc. 96(18): 5677-5689.

Wrackmeyer, M.S., Hein, M., Petrich, A., Meiss, J., Hummert, M., Riede, M.K. & Leo, K. 2011. Dicyanovinyl substituted oligothiophenes: Thermal stability, mobility measurements, and performance in photovoltaic devices. Sol. Energy Mater. Sol. Cells 95(12): 3171-3175.

Wu, Q.X., Geng, Y., Liao, Y., Tang, X.D., Yang, G.C. & Su, Z.M. 2012. Theoretical studies of the effect of electron-withdrawing dicyanovinyl group on the electronic and charge-transport properties of fluorene-thiophene oligomers. Theor. Chem. Acc. 131(3): 1-9.

Wu, C.C., Hung, W.Y., Liu, T.L., Zhang, L.Z. & Luh, T.Y. 2003. Hole-transport properties of a furan-containing oligoaryl. J. Appl. Phys. 93(9): 5465-5471.

Yang, S.C., Graupner, W., Guha, S., Puschnig, P., Martin, C., Chandrasekhar, H.R., Chandrasekhar, M., Leising, G., Ambrosch-Draxl, C. & Scherf, U. 2000. Geometry-dependent electronic properties of highly fluorescent conjugated molecules. Phys. Rev. Lett. 85(11): 2388-2391.

Zhang, Y., Cai, X., Bian, Y., Li, X. & Jiang, J. 2008. Heteroatom substitution of oligothienoacenes: From good P-type semiconductors to good ambipolar semiconductors for organic field-effect transistors. J. Phys. Chem. C 112(13): 5148-5159.

Zwier, M.C., Shorb, J.M. & Krueger, B.P. 2007. Hybrid molecular dynamics-quantum mechanics simulations of solute spectral properties in the condensed phase: Evaluation of simulation parameters. J. Comput. Chem. 28(9): 1572-1581.

 

*Corresponding author; email: rashidahmed@utm.my

 

 

previous