Sains Malaysiana 43(6)(2014):
877–883
Ionic Liquid Incorporated PVC Based Polymer Electrolytes: Electrical
and Dielectric Properties
(Cecair Ionik Diperbadankan
dengan Polimer Elektrolit Berasaskan PVC:
Sifat Elektrik dan Dielektrik)
SITI KHATIJAH
DERAMAN1*, NOR
SABIRIN MOHAMED2
& RI HANUM
YAHAYA SUBBAN1
1Faculty of Applied Sciences, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor
Malaysia
2Centre for Foundation Studies in Science,
University of Malaya, 50603 Kuala Lumpur
Malaysia
Received:
22 March 2013/Accepted: 2 August 2013
ABSTRACT
This paper is focussed on conductivity
and dielectric properties of Poly (vinyl) chloride (PVC)-
ammonium triflate (NH4CF3SO3)
- butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (Bu3MeNTf2N)
ionic liquid, electrolyte system. The electrolyte is prepared by
solution cast technique. In this work, the sample containing 30
wt. % NH4CF3SO3 exhibits the highest room temperature
conductivity of 2.50 × 10-7
S cm-1. Ionic
liquid is added in various quantities to the 70 wt. % PVC-30
wt. % NH4CF3SO3
composition in order to enhance the conductivity of
the sample. The highest conductivity at room temperature is obtained
for the sample containing 15 wt. % Bu3MeNTf2N with a value of 1.56 ×
10 -4 S cm-1.
The effects of ionic liquid addition on the frequency dependent
dielectric properties of PVC based electrolytes is
investigated by electrochemical impedance spectroscopy (EIS)
at room temperature. The values of dielectric constant were found
to increase with increasing conductivity of the samples. Analysis
of the ac conductivity data showed the electrolytes to be of the
non-Debye type.
Keywords: Dielectric properties; EIS; ionic liquid; non-Debye type
ABSTRAK
Kertas ini memberi tumpuan kepada kajian
konduktiviti dan dielektrik Poli (vinil) klorida (PVC)-
ammonium triflat (NH4CF3SO3)-
bis butyltrimethyl ammonium (Sulfonyl trifluoromethyl) imide (Bu3MeNTf2N), cecair ionik, sistem elektrolit.
Elektrolit telah disediakan dengan teknik cast penyelesaian. Dalam
penyelidikan ini, sampel yang mengandungi 30 %bt NH4CF3SO3 dipamerkan pada suhu bilik tertinggi
kekonduksian 2.50×10-7 S
cm-1. Cecair ionik kemudiannya
ditambah dalam kuantiti yang pelbagai 70 %bt PVC-30
%bt NH4CF3SO3
komposisi dalam usaha untuk meningkatkan kekonduksian
sampel. Kekonduksian tertinggi diperoleh pada suhu bilik 1.56×10-4 Scm-1
untuk sampel yang mengandungi 15 %bt Bu3MeNTf2N. Kesan sampingan cecair
ionik pada sifat frekuensi dielektrik bergantung kepada elektrolit
berasaskan PVC telah dikaji oleh spektroskopi impedans elektrokimia
(EIS)
dalam suhu bilik. Nilai pemalar dielektrik didapati telah meningkat
dengan peningkatan kekonduksian sampel. Analisis ac kekonduksian
data menunjukkan elektrolit adalah bukan dari jenis Debye.
Kata
kunci: Cecair ionik; EIS;
jenis bukan-Debye; sifat dielektrik
REFERENCES
Adachi, K.
& Urakawa, O. 2002. Dielectric study of concentration fluctuations in
concentrated polymersolutions. J. Non-Cryst. Solids 307-310: 667-670.
Armstrong,
R.D., Dickinson, T. & Wills, P.M. 1974. The A.C. impedance of powdered and
sintered solid ionic conductors. J. Electroanal Chem. and Interfacial
Electrochem. 53(3): 389-405.
Baskaran, R.,
Selvasekarapandian, S., Kuwata, S., Kawamura, J. & Hattori,
T. 2006. Conductivity and thermal studies of blend polymer electrolytes
based on PVAc–PMMA. Solid State Ionics 177: 2679-2682.
Bennett,
M.D. & Leo, D.J. 2004. Ionic liquids as stable solvents for ionic polymer
transducers. Sensors and Actuators A: Physical 115(1): 79-90.
Cheng, H.,
Zhu, C., Huang, B., Lu, M. & Yang, Y. 2007. Synthesis and electrochemical
characterization of PEO-based polymer electrolytes with room temperature ionic
liquids. Electrochim. Acta 52: 5789-5794.
Doyle, M.,
Choi, S.K. & Proulx, G. 2000. High-temperature proton conducting membranes
based on perfluorinated ionomer membrane-ionic liquid composites. Journal of
the Electrochemical Society 147(1): 34-37.
Dutta, P.
& Biswas, S. 2002. Dielectric relaxation in polyaniline-polyvinyl alcohol
composites. Mater. Res. Bull. 37: 193-200.
Dyre, J.C.
1991. Some remarks on ac conduction in disordered solids. Non-Cryst. Solids 135:
219-226.
Fuller, J.,
Breda, A.C. & Carlin, R.T.1997. Ionic liquid-polymer gel electrolytes. J.
Electrochem. Soc.144: L67-L70.
Hodge, I.M.,
Ingram, M.D. & West, A.R. 1976. Impedance and modulus spectroscopy of
polycrystalline solid electrolytes. J. Electroanal Chem. and Interfacial
Electrochem. 74(2): 125-143.
Howell,
F.S., Bose, R.A., Macedo, P.B. & Moynihan, C.T. 1974. Electrical relaxation
in a glass-forming molten salt. J. Phys. Chem. 78: 639-648.
Hu, C.,
Changbao, Z., Bin, H., Mi, L. & Yong, Y. 2007. Synthesis and
electrochemical characterization of PEO-based polymer electrolytes with room
temperature ionic liquids. Electrochimica Acta 52: 5789-5794.
Isasi, J.,
Lopez, M.L., Veiga, M.L., Ruiz-Hitzky, E. & Pico, C. 1995. Structural
characterization and electrical properties of a novel defect pyrochlore. J.
Solid State Chem. 116: 290-295.
Kyritsis,
A., Pissis, P. & Grammatikakis, J. 1995. Dielectric relaxation spectroscopy
in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. Part B:
Polym. Phys. 33: 1737-1750.
MacCallum,
J.R. & Vincent, C.A. 1989. Polymer Electrolyte Reviews. London:
Elsevier.
Md Abu,
b.H.S., Kaneko, T., Noda, A. & Watanabe, M. 2005. Ion gels prepared by in
situ radical polymerization of vinyl monomers in an ionic liquid and their
characterization as polymer electrolytes. J. Am. Chem. Soc. 127(13):
4976-4983.
Mishra,
R. & Rao, K.J. 1998. Electrical conductivity studies of
poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ionics 106:
113-127.
Noda, A., Hayamizu, K. & Watanabe, M. 2001. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion
coefficient, viscosity, and ionic conductivity of non-chloroaluminate
room-temperature ionic liquids. J. Phys. Chem. B 105(20): 4603-4610.
Noda, A. & Watanabe, M. 2000. Highly
conductive polymer electrolytes prepared by in situ polymerization of vinyl
monomers in room temperature molten salts. Electrochim. Acta 45:
1265-1270.
Ohno, H., Yoshizawa, M. & Ogihara, W.
2004. Development of new class of ion conductive polymers based on ionic
liquids. Electrochimica Acta 50(2): 255-261.
Padmasree, K., Kanchan, D.K. &
Kulkarni, A.R. 2006. Impedance and modulus studies of the solid electrolyte
system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)],
where 1 ≤x/y ≤ 3. Solid State Ionics 177(5-6): 475-482.
Pradan, D.K., Choudhary, R.N.P. &
Samantaray, B.K. 2009. Studies of dielectric and electrical properties of
plasticized polymer nanocomposite electrolytes. Mater. Chem. Phys. 115:
557-561.
Ramesh, S. & Arof, A.K. 2001. Ionic
conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater.
Sci. Eng. B 85: 11-15.
Richert, R. & Wagner, H. 1998. The
dielectric modulus: relaxation versus retardation. Solid State Ionics 105(1-4):
167-173.
Shastry, M.C.R. & Rao, K.J. 1991. Ac
conductivity and dielectric relaxation studies in AgI-based fast ion conducting
glasses. Solid State Ionics 44(3-4): 187-198.
Shin, J.H., Henderson, W.A. &
Passerini, S. 2005. PEO-based polymer electrolytes with ionic liquids and their
use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc. 152(5):
A978-A983.
Shin, J., Henderson, W.A. &
Passerini, S. 2003. Ionic liquids to the rescue? Overcoming the ionic
conductivity limitations of polymer electrolytes. Electrochem. Commun.
5(12): 1016-1020.
Shobukawa, H.,Tozuda, H., Md Abu, b.H.S.
& Watanabe, M. 2005. Ion transport properties of lithium ionic liquids and
their ion gels. Electrochim. Acta 50(19): 3872-3877.
Stallworth, P.E., Fontanella, J.J.,
Wintersgill, M.C., Scheidler, C.D., Immel, J.J., Greenbaum, S.G. & Gozdz,
A.S. 1999. NMR, DSC and high pressure electrical conductivity studies of liquid
and hybrid electrolytes. J. Power Sources 81-82: 739-747.
Sun, J., MacFarlane, D.R. & Forsyth,
M. 2002. Lithium polyelectrolyte–ionic liquid systems. Solid State
Ionics 147: 333-339.
Tarascon, J.M. & Armand, M. 2001.
Issues and challenges facing rechargeable lithium batteries. Nature 414:
359-367.
Tokuda, H., Hayamizu, K., Ishii, K., Md
Abu, b.H.S. & Watanabe, M. 2004. Physicochemical properties and structures
of room temperature ionic liquids. 1. variation of anionic species. J. Phys.
Chem. B 108(42): 16593-16600.
Venkateswarlu, M., Reddy, K.N, Rambabu,
B. & Satyanarayana, N. 2000. A.c. conductivity and dielectric studies of
silver-based fast ion conducting glass system. Solid State Ionics 127(1-2):
177-184.
Yamamoto, T., Inami, M. & Kanbara, T.
1994. Preparation and properties of polymer solid electrolytes using poly(vinyl
alcohol) and thermally resistive poly[arylene(1,3-
imidazolidine-2,4,5-trione-1,3-diyl)] as matrix polymers. Chem. Mater.
6(1): 44-50.
*Corresponding author; email:
rihanum43@salam.uitm.edu.my
|