Sains Malaysiana 43(6)(2014): 877–883

 

Ionic Liquid Incorporated PVC Based Polymer Electrolytes: Electrical and Dielectric Properties

(Cecair Ionik Diperbadankan dengan Polimer Elektrolit Berasaskan PVC: Sifat Elektrik dan Dielektrik)

 

 

SITI KHATIJAH DERAMAN1*, NOR SABIRIN MOHAMED2 & RI HANUM YAHAYA SUBBAN1

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor

Malaysia

 

2Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur

Malaysia

 

Received: 22 March 2013/Accepted: 2 August 2013

 

 

ABSTRACT

 

This paper is focussed on conductivity and dielectric properties of Poly (vinyl) chloride (PVC)- ammonium triflate (NH4CF3SO3) - butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (Bu3MeNTf2N) ionic liquid, electrolyte system. The electrolyte is prepared by solution cast technique. In this work, the sample containing 30 wt. % NH4CF3SO3 exhibits the highest room temperature conductivity of 2.50 × 10-7 S cm-1. Ionic liquid is added in various quantities to the 70 wt. % PVC-30 wt. % NH4CF3SO3 composition in order to enhance the conductivity of the sample. The highest conductivity at room temperature is obtained for the sample containing 15 wt. % Bu3MeNTf2N with a value of 1.56 × 10 -4 S cm-1. The effects of ionic liquid addition on the frequency dependent dielectric properties of PVC based electrolytes is investigated by electrochemical impedance spectroscopy (EIS) at room temperature. The values of dielectric constant were found to increase with increasing conductivity of the samples. Analysis of the ac conductivity data showed the electrolytes to be of the non-Debye type.

 

Keywords: Dielectric properties; EIS; ionic liquid; non-Debye type

 

ABSTRAK

Kertas ini memberi tumpuan kepada kajian konduktiviti dan dielektrik Poli (vinil) klorida (PVC)- ammonium triflat (NH4CF3SO3)- bis butyltrimethyl ammonium (Sulfonyl trifluoromethyl) imide (Bu3MeNTf2N), cecair ionik, sistem elektrolit. Elektrolit telah disediakan dengan teknik cast penyelesaian. Dalam penyelidikan ini, sampel yang mengandungi 30 %bt NH4CF3SO3 dipamerkan pada suhu bilik tertinggi kekonduksian 2.50×10-7 S cm-1. Cecair ionik kemudiannya ditambah dalam kuantiti yang pelbagai 70 %bt PVC-30 %bt NH4CF3SO3 komposisi dalam usaha untuk meningkatkan kekonduksian sampel. Kekonduksian tertinggi diperoleh pada suhu bilik 1.56×10-4 Scm-1 untuk sampel yang mengandungi 15 %bt Bu3MeNTf2N. Kesan sampingan cecair ionik pada sifat frekuensi dielektrik bergantung kepada elektrolit berasaskan PVC telah dikaji oleh spektroskopi impedans elektrokimia (EIS) dalam suhu bilik. Nilai pemalar dielektrik didapati telah meningkat dengan peningkatan kekonduksian sampel. Analisis ac kekonduksian data menunjukkan elektrolit adalah bukan dari jenis Debye.

 

Kata kunci: Cecair ionik; EIS; jenis bukan-Debye; sifat dielektrik

REFERENCES

 

Adachi, K. & Urakawa, O. 2002. Dielectric study of concentration fluctuations in concentrated polymersolutions. J. Non-Cryst. Solids 307-310: 667-670.

Armstrong, R.D., Dickinson, T. & Wills, P.M. 1974. The A.C. impedance of powdered and sintered solid ionic conductors. J. Electroanal Chem. and Interfacial Electrochem. 53(3): 389-405.

Baskaran, R., Selvasekarapandian, S., Kuwata, S., Kawamura, J. & Hattori, T. 2006. Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177: 2679-2682.

Bennett, M.D. & Leo, D.J. 2004. Ionic liquids as stable solvents for ionic polymer transducers. Sensors and Actuators A: Physical 115(1): 79-90.

Cheng, H., Zhu, C., Huang, B., Lu, M. & Yang, Y. 2007. Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim. Acta 52: 5789-5794.

Doyle, M., Choi, S.K. & Proulx, G. 2000. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. Journal of the Electrochemical Society 147(1): 34-37.

Dutta, P. & Biswas, S. 2002. Dielectric relaxation in polyaniline-polyvinyl alcohol composites. Mater. Res. Bull. 37: 193-200.

Dyre, J.C. 1991. Some remarks on ac conduction in disordered solids. Non-Cryst. Solids 135: 219-226.

Fuller, J., Breda, A.C. & Carlin, R.T.1997. Ionic liquid-polymer gel electrolytes. J. Electrochem. Soc.144: L67-L70.

Hodge, I.M., Ingram, M.D. & West, A.R. 1976. Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal Chem. and Interfacial Electrochem. 74(2): 125-143.

Howell, F.S., Bose, R.A., Macedo, P.B. & Moynihan, C.T. 1974. Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78: 639-648.

Hu, C., Changbao, Z., Bin, H., Mi, L. & Yong, Y. 2007. Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochimica Acta 52: 5789-5794.

Isasi, J., Lopez, M.L., Veiga, M.L., Ruiz-Hitzky, E. & Pico, C. 1995. Structural characterization and electrical properties of a novel defect pyrochlore. J. Solid State Chem. 116: 290-295.

Kyritsis, A., Pissis, P. & Grammatikakis, J. 1995. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. Part B: Polym. Phys. 33: 1737-1750.

MacCallum, J.R. & Vincent, C.A. 1989. Polymer Electrolyte Reviews. London: Elsevier.

Md Abu, b.H.S., Kaneko, T., Noda, A. & Watanabe, M. 2005. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127(13): 4976-4983.

Mishra, R. & Rao, K.J. 1998. Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ionics 106: 113-127.

Noda, A., Hayamizu, K. & Watanabe, M. 2001. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105(20): 4603-4610.

Noda, A. & Watanabe, M. 2000. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim. Acta 45: 1265-1270.

Ohno, H., Yoshizawa, M. & Ogihara, W. 2004. Development of new class of ion conductive polymers based on ionic liquids. Electrochimica Acta 50(2): 255-261.

Padmasree, K., Kanchan, D.K. & Kulkarni, A.R. 2006. Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤x/y ≤ 3. Solid State Ionics 177(5-6): 475-482.

Pradan, D.K., Choudhary, R.N.P. & Samantaray, B.K. 2009. Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater. Chem. Phys. 115: 557-561.

Ramesh, S. & Arof, A.K. 2001. Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater. Sci. Eng. B 85: 11-15.

Richert, R. & Wagner, H. 1998. The dielectric modulus: relaxation versus retardation. Solid State Ionics 105(1-4): 167-173.

Shastry, M.C.R. & Rao, K.J. 1991. Ac conductivity and dielectric relaxation studies in AgI-based fast ion conducting glasses. Solid State Ionics 44(3-4): 187-198.

Shin, J.H., Henderson, W.A. & Passerini, S. 2005. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc. 152(5): A978-A983.

Shin, J., Henderson, W.A. & Passerini, S. 2003. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5(12): 1016-1020.

Shobukawa, H.,Tozuda, H., Md Abu, b.H.S. & Watanabe, M. 2005. Ion transport properties of lithium ionic liquids and their ion gels. Electrochim. Acta 50(19): 3872-3877.

Stallworth, P.E., Fontanella, J.J., Wintersgill, M.C., Scheidler, C.D., Immel, J.J., Greenbaum, S.G. & Gozdz, A.S. 1999. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 81-82: 739-747.

Sun, J., MacFarlane, D.R. & Forsyth, M. 2002. Lithium polyelectrolyte–ionic liquid systems. Solid State Ionics 147: 333-339.

Tarascon, J.M. & Armand, M. 2001. Issues and challenges facing rechargeable lithium batteries. Nature 414: 359-367.

Tokuda, H., Hayamizu, K., Ishii, K., Md Abu, b.H.S. & Watanabe, M. 2004. Physicochemical properties and structures of room temperature ionic liquids. 1. variation of anionic species. J. Phys. Chem. B 108(42): 16593-16600.

Venkateswarlu, M., Reddy, K.N, Rambabu, B. & Satyanarayana, N. 2000. A.c. conductivity and dielectric studies of silver-based fast ion conducting glass system. Solid State Ionics 127(1-2): 177-184.

Yamamoto, T., Inami, M. & Kanbara, T. 1994. Preparation and properties of polymer solid electrolytes using poly(vinyl alcohol) and thermally resistive poly[arylene(1,3- imidazolidine-2,4,5-trione-1,3-diyl)] as matrix polymers. Chem. Mater. 6(1): 44-50.

 

*Corresponding author; email: rihanum43@salam.uitm.edu.my

 

 

previous