Sains Malaysiana 43(6)(2014): 885–894
Nano Fe3O4-Activated Carbon Composites
for Aqueous Supercapacitors
(Nanokomposit Fe3O4-Karbon Aktif
untuk Super-Kapasitor Akueus)
M.Y.
HO12, P.S.
KHIEW1*, D.
ISA1, T.K. TAN1 , W.S.
CHIU3, C.H. CHIA4, M.A.A. HAMID4 & R. SHAMSUDIN4
1Faculty of Engineering,
University of Nottingham Malaysia Campus, Jalan
Broga, 43500 Semenyih, Selangor,
Malaysia
2Materials Engineering Division,
School of Technology, Tunku Abdul Rahman
College
Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
3Low Dimensional Materials
Research Center, Department of Physics, Faculty of Science
University Malaya, 50603
Kuala Lumpur, Malaysia
4School
of Applied Physics, Faculty Science and Technology, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Received: 15 March 2013/Accepted:
20 December 2013
ABSTRACT
In this study, a
symmetric supercapacitor has been fabricated by adopting the nanostructured
iron oxide (Fe3O4)-activated carbon (AC) composite as the core electrode materials.
The composite electrodes were prepared via a facile mechanical mixing process
and PTFE polymeric solution has been used as the electrode material binder.
Structural analysis of the nanocomposite electrodes were characterized by
scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis.
The electrochemical performances of the prepared supercapacitor were studied
using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)
in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions,
respectively. The experimental results showed that the highest specific
capacitance of 43 F/g is achieved with a fairly low Fe3O4 nanomaterials loading (4 wt. %) in 1 M Na2SO3. It is clear that the low
concentration of nanostructured Fe3O4 has improved the capacitive
performance of the composite via pseudocapacitance charge storage mechanism as
well as the enhancement on the specific surface areas of the electrode.
However, further increasing of the Fe3O4 content in the electrode is
found to distort the capacitive performance and deteriorate the specific
surface area of the electrode, mainly due to the aggregation of the Fe3O4 particles within the composite. Additionally, the CV results showed that
the Fe3O4/AC nanocomposite electrode in Na2SO3 electrolyte exhibits a better charge storage performance if compared with
Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite
(SO32-) anions which act as
catalysts for subsequent redox and intercalation reactions.
Keywords: Activated carbon; aqueous
electrolyte; iron oxide; supercapacitor
ABSTRAK
Dalam kajian ini, super-kapasitor bersimetri telah dibina dengan
menggunakan nanokomposit ferum oksida (Fe3O4)- karbon aktif (AC) sebagai bahan asas
elektrod. Elektrod nanokomposit telah disediakan secara percampuran mekanikal
mudah dan larutan polimer PTFE telah digunakan sebagai agen pengikat untuk
bahan elektrod. Pencirian struktur elektrod nanokomposit telah dilakukan dengan
mikroskopi pengimbasan elektron (SEM) dan analisa Brunauer-Emmett-Teller (BET).
Pencapaian elektro-kimia untuk super-kapasitor dalam larutan akueus 1.0 M Na2SO3 dan 1.0 M Na2SO4 telah dianalisis dengan mengunakan voltametri
siklik (CV) dan spektroskopi impedansi elektro-kimia (EIS). Keputusan kajian
menunjukkan kemuatan kapasitan tertinggi sebanyak 43 F/g boleh dicapai dengan
penambahan kecil nanozarah Fe3O4 dalam
larutan 1 M Na2SO3. Ini
jelas menunjukkan penambahan nanozarah Fe3O4 pada kandungan yang rendah dapat meningkatkan
pencapaian kemuatan kapasitan elektrod komposit menerusi mekanisme caj
penyimpanan pseudo-kapasitan dan juga menambahkan keluasan permukaan spesifik
elektrod. Walau bagaimanapun, penambahan kandungan Fe3O4 yang lebih tinggi di dalam elektrod didapati
akan menjejaskan pencapaian kapasitan dan mengurangkan keluasan permukaan
spesifik elektrod, disebabkan penggumpalan nanozarah Fe3O4 di dalam komposit. Tambahan
pula, keputusan CV menunjukkan pencapaian caj penyimpanan elektrod
nano-komposit Fe3O4/AC dalam elektrolit Na2SO3 adalah lebih baik berbanding dengan larutan Na2SO4. Nanozarah
Fe3O4 dipercayai
dapat menyediakan tapak penjerapan anion sulfida (SO32-) yang bertindak sebagai pemangkin untuk tindak balas
interkalasi dan redoks seterusnya.
Kata kunci: Elektrolit akueus; karbon aktif; nanozarah ferum oksida; super-kapasitor
REFERENCES
Belanger, D., Brousse, T. & Long. J. 2008. Manganese oxides: Battery materials
make the leap to electrochemical capacitors. The Electrochemical
Society's Interface 17(1): 49-52.
Brousse, T. & Belanger. D. 2003. A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte. Electrochemical
and Solid-State Letters 6: A244-A248.
Chen, J., Huang, K. & Liu, S. 2009. Hydrothermal preparation of
octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochimica
Acta 55: 1-5.
Conway, B.E., Birss, V. & Wojtowicz, J. 1997. The role and utilization
of pseudocapacitance for energy storage by supercapacitors. Journal of Power
Sources 66: 1-14.
Cottineau, T., Toupin, M., Delahaye, T., Brousse, T. & Belanger, D.
2005. Nanostructured transition metal oxides for aqueous hybrid electrochemical
supercapacitors. Applied Physics A 82: 599-606.
Dubal, D.P., Kim, W.B. & Lokhande, C.D. 2012. Galvanostatically
deposited Fe: MnO2 electrodes for supercapacitor application. Journal of
Physics and Chemistry of Solids 73: 18-24.
Du, X., Wang, C., Chen, M., Jiao, Y. & Wang, J. 2009. Electrochemical
performances of nanoparticle Fe3O4/Activated carbon
supercapacitor using KOH electrolyte solution. Journal of Physical Chemistry
C 113: 2643-2646.
Ganesh, V., Pitchumani, S. & Lakshminarayanan, V. 2006. New symmetric
and asymmetric supercapacitors based on high surface area porous nickel and
activated carbon. Journal of Power Sources 158: 1523-1532.
Hu, C.C., Liu, M.J. & Chang, K.H. 2007. Anodic deposition of hydrous
ruthenium oxide for supercapacitors. Journal of Power Sources 163:
1126-1131.
Hu, C.C. & Chen, W.C. 2004. Effects of substrates on the capacitive
performance of RuOx·nH2O and activated carbon - RuOx electrodes for supercapacitors. Electrochimica Acta 49:
3469-3477.
Jayalakshmi, M., Rao, M.M., Venugopal, N. & Kim, K-B. 2007.
Hydrothermal synthesis of SnO2-V2 O5 mixed oxide and electrochemical screening of carbon
nano-tubes (CNT), V2 O5 , V2 O5 - CNT , and SnO2 - V2 O5 - CNT electrodes for
supercapacitor applications. Journal of Power Sources 166: 578-583.
Jovic, V.D. 2012. Determination of the correct value of Cdl from the
impedance results fitted by the commercially available software.
http://www.gamry.com Accessed on Jan 2012.
Kalpana, D., Omkumar, K.S., Kumar, S.S. & Renganathan, N.G. 2006. A
novel high power symmetric ZnO/carbon aerogel composite electrode for
electrochemical supercapacitor. Electrochimica Acta 52: 1309-1315.
Kim, H. & Popov, B.N. 2002. Characterization of hydrous ruthenium
oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. Journal
of Power Sources 104: 52-61.
Kim, Y.H. & Park, S.J. 2011. Roles of nanosized Fe3O4 on
supercapacitive properties of carbon nanotubes. Current Applied Physics 11:
462-466.
Kuo, S.L. & Wu, N.L. 2003. Composite supercapacitor containing tin
oxide and electroplated ruthenium oxide. Electrochemical Solid State Letter 6:
A85-A87.
Lee, H.Y. & Goodenough, J.B. 1999. Supercapacitor behaviour with KCl
electrolyte. Journal of Solid State Chemistry 223: 220-223.
Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y. & Sun, Z. 2010.
Electrochemical behaviours of graphene – ZnO and graphene – SnO2 composite films for supercapacitors. Electrochimica
Acta 55: 4170-4173.
Macdonald, J.R. & Barsoukov, E. 2005. Impedance Spectroscopy, Theory
Experiment and Applications. Canada: John Wiley & Sons, Inc.
Mallouki, M., Tran-Van, F., Sarrazin, C., Simon, P., Daffos, B., De, A.,
Chevrot, C. Fauvarque, J. 2006. Polypyrrole-Fe2O3 nanohybrid
materials for electrochemical storage. Journal of Solid State
Electrochemistry 11: 398-406.
Masarapu, C., Zeng, H.F., Hung, K.H. & Wei, B. 2009. Effect of
temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:
2199-2206.
Nagarajan, N., Humadi, H. & Zhitomirsky, I. 2006. Cathodic
electrodeposition of MnOx films
for electrochemical supercapacitors. Electrochimica Acta 51: 3039-3045.
Nagarajan, N. & Zhitomirsky, I. 2006. Cathodic electrosynthesis of iron
oxide films for electrochemical supercapacitors. Journal of Applied
Electrochemistry 36: 1399-1405.
Nathan, T., Aziz, A., Noor, A.F. & Prabaharan, S.R.S. 2008.
Nanostructured NiO for electrochemical capacitors : Synthesis and
electrochemical properties. Journal of Solid State Electrochemistry 12:
1003-1009.
Pasquier, A.D., Plitz, I., Gural, J., Menocal, S. & Amatucci, G. 2003.
Characteristics and performance of 500 F asymmetric hybrid advanced
supercapacitor prototypes. Journal of Power Sources 113: 62-71.
Sassin, M.B., Mansour, A.N., Pettigrew, K.A., Rolison, D.R. & Long,
J.W. 2010. Electroless deposition of conformal nanoscale iron oxide on carbon
charge storage. ACS Nano 4: 4505-4514.
Shukla, A.K., Sampath, S. & Vijayamohanan, K. 2000. Electrochemical
supercapacitors: Energy storage beyond batteries. Current Science 79:
1656-1661.
Simon, P. & Gogotsi, Y. 2008. Materials for electrochemical capacitors. Nature Materials 7: 845-854.
Wang, H., Tang, Z.Y., Sun, L., He, Y.B., Wu, Y.X. & Li, Z.Y. 2009.
Capacitance performance enhancement of TiO2 doped with Ni and graphite. Rare Metals 28:
231-236.
Wang, S.C., Chen, C.Y., Chien, T.C., Lee, P.Y. & Lin, C.K. 2008.
Supercapacitive properties of spray pyrolyzed iron-added manganese oxide
powders deposited by electrophoretic deposition technique. Thin Solid Films 517:
1234-1238.
Wang, S.Y., Ho, K.C., Kuo, S.L. & Wu, N.L. 2006. Investigation on
capacitance mechanisms of Fe3O4 electrochemical capacitors. Journal of the Electrochemical Society 153: A75-A80.
Wang, X., Han, X., Lim, M., Singh, N., Gan, C.L., Jan, M. & Lee, P.S.
2012. Nickel cobalt oxide-single wall carbon nanotube composite material for superior
cycling stability and high-performance supercapacitor application. The
Journal of Physical Chemistry C 116: 12448-12454.
Wu, N.L., Wang, S.L. & Han, C.Y. 2003. Electrochemical capacitor of
magnetite in aqueous electrolytes. Journal of Power Sources 113:
173-178.
Wu, N.L. 2002. Nanocrystalline oxide supercapacitors. Materials
Chemistry and Physics 75: 6-11.
Xie, K.Y., Li, J., Lai, Y.Q., Lu, W., Zhang, Z.A., Liu, Y.X., Zhou, L.M.
& Huang, H.T. 2011. Highly ordered iron oxide nanotube arrays as electrodes
for electrochemical energy storage. Electrochemistry Communications 13:
657-660.
Yeong, J., Liang, K., Hyeok, K. & Hee. Y. 2005. Nickel oxide/carbon
nanotubes nanocomposite for electrochemical capacitance. Synthetic Metals 150:
153-157.
Yuan, G.H., Jiang, Z.H., Aramata, A. & Gao, Y.Z. 2005. Electrochemical
behaviour of activated-carbon capacitor material loaded with nickel oxide. Carbon 43: 2913-2917.
Zhang, S.W. & Chen, G.Z. 2008. Manganese oxide based
materials for supercapacitors. Energy Materials: Materials Science and
Engineering for Energy Systems 3: 186-200.
*Corresponding author; email:
PoiSim.Khiew@nottingham.edu.my
|