Sains Malaysiana 43(6)(2014): 885–894

 

Nano Fe3O4-Activated Carbon Composites for Aqueous Supercapacitors

(Nanokomposit Fe3O4-Karbon Aktif untuk Super-Kapasitor Akueus)

M.Y. HO12, P.S. KHIEW1*, D. ISA1, T.K. TAN1 , W.S. CHIU3, C.H. CHIA4, M.A.A. HAMID4 & R. SHAMSUDIN4

1Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia

 

2Materials Engineering Division, School of Technology, Tunku Abdul Rahman College

Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia

 

3Low Dimensional Materials Research Center, Department of Physics, Faculty of Science

University Malaya, 50603 Kuala Lumpur, Malaysia

 

4School of Applied Physics, Faculty Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Received: 15 March 2013/Accepted: 20 December 2013

 

ABSTRACT

In this study, a symmetric supercapacitor has been fabricated by adopting the nanostructured iron oxide (Fe3O4)-activated carbon (AC) composite as the core electrode materials. The composite electrodes were prepared via a facile mechanical mixing process and PTFE polymeric solution has been used as the electrode material binder. Structural analysis of the nanocomposite electrodes were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions, respectively. The experimental results showed that the highest specific capacitance of 43 F/g is achieved with a fairly low Fe3O4 nanomaterials loading (4 wt. %) in 1 M Na2SO3. It is clear that the low concentration of nanostructured Fe3O4 has improved the capacitive performance of the composite via pseudocapacitance charge storage mechanism as well as the enhancement on the specific surface areas of the electrode. However, further increasing of the Fe3O4 content in the electrode is found to distort the capacitive performance and deteriorate the specific surface area of the electrode, mainly due to the aggregation of the Fe3O4 particles within the composite. Additionally, the CV results showed that the Fe3O4/AC nanocomposite electrode in Na2SO3 electrolyte exhibits a better charge storage performance if compared with Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO32-) anions which act as catalysts for subsequent redox and intercalation reactions.

 

Keywords: Activated carbon; aqueous electrolyte; iron oxide; supercapacitor

 

ABSTRAK

Dalam kajian ini, super-kapasitor bersimetri telah dibina dengan menggunakan nanokomposit ferum oksida (Fe3O4)- karbon aktif (AC) sebagai bahan asas elektrod. Elektrod nanokomposit telah disediakan secara percampuran mekanikal mudah dan larutan polimer PTFE telah digunakan sebagai agen pengikat untuk bahan elektrod. Pencirian struktur elektrod nanokomposit telah dilakukan dengan mikroskopi pengimbasan elektron (SEM) dan analisa Brunauer-Emmett-Teller (BET). Pencapaian elektro-kimia untuk super-kapasitor dalam larutan akueus 1.0 M Na2SO3 dan 1.0 M Na2SO4 telah dianalisis dengan mengunakan voltametri siklik (CV) dan spektroskopi impedansi elektro-kimia (EIS). Keputusan kajian menunjukkan kemuatan kapasitan tertinggi sebanyak 43 F/g boleh dicapai dengan penambahan kecil nanozarah Fe3O4 dalam larutan 1 M Na2SO3. Ini jelas menunjukkan penambahan nanozarah Fe3O4 pada kandungan yang rendah dapat meningkatkan pencapaian kemuatan kapasitan elektrod komposit menerusi mekanisme caj penyimpanan pseudo-kapasitan dan juga menambahkan keluasan permukaan spesifik elektrod. Walau bagaimanapun, penambahan kandungan Fe3O4 yang lebih tinggi di dalam elektrod didapati akan menjejaskan pencapaian kapasitan dan mengurangkan keluasan permukaan spesifik elektrod, disebabkan penggumpalan nanozarah Fe3O4 di dalam komposit. Tambahan pula, keputusan CV menunjukkan pencapaian caj penyimpanan elektrod nano-komposit Fe3O4/AC dalam elektrolit Na2SO3 adalah lebih baik berbanding dengan larutan Na2SO4. Nanozarah Fe3O4 dipercayai dapat menyediakan tapak penjerapan anion sulfida (SO32-) yang bertindak sebagai pemangkin untuk tindak balas interkalasi dan redoks seterusnya.

 

Kata kunci: Elektrolit akueus; karbon aktif; nanozarah ferum oksida; super-kapasitor

REFERENCES

Belanger, D., Brousse, T. & Long. J. 2008. Manganese oxides: Battery materials make the leap to electrochemical capacitors. The Electrochemical Society's Interface 17(1): 49-52.

Brousse, T. & Belanger. D. 2003. A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte. Electrochemical and Solid-State Letters 6: A244-A248.

Chen, J., Huang, K. & Liu, S. 2009. Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochimica Acta 55: 1-5.

Conway, B.E., Birss, V. & Wojtowicz, J. 1997. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources 66: 1-14.

Cottineau, T., Toupin, M., Delahaye, T., Brousse, T. & Belanger, D. 2005. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A 82: 599-606.

Dubal, D.P., Kim, W.B. & Lokhande, C.D. 2012. Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. Journal of Physics and Chemistry of Solids 73: 18-24.

Du, X., Wang, C., Chen, M., Jiao, Y. & Wang, J. 2009. Electrochemical performances of nanoparticle Fe3O4/Activated carbon supercapacitor using KOH electrolyte solution. Journal of Physical Chemistry C 113: 2643-2646.

Ganesh, V., Pitchumani, S. & Lakshminarayanan, V. 2006. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. Journal of Power Sources 158: 1523-1532.

Hu, C.C., Liu, M.J. & Chang, K.H. 2007. Anodic deposition of hydrous ruthenium oxide for supercapacitors. Journal of Power Sources 163: 1126-1131.

Hu, C.C. & Chen, W.C. 2004. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon - RuOx electrodes for supercapacitors. Electrochimica Acta 49: 3469-3477.

Jayalakshmi, M., Rao, M.M., Venugopal, N. & Kim, K-B. 2007. Hydrothermal synthesis of SnO2-V2 O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2 O5 , V2 O5 - CNT , and SnO2 - V2 O5 - CNT electrodes for supercapacitor applications. Journal of Power Sources 166: 578-583.

Jovic, V.D. 2012. Determination of the correct value of Cdl from the impedance results fitted by the commercially available software. http://www.gamry.com Accessed on Jan 2012.

Kalpana, D., Omkumar, K.S., Kumar, S.S. & Renganathan, N.G. 2006. A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochimica Acta 52: 1309-1315.

Kim, H. & Popov, B.N. 2002. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. Journal of Power Sources 104: 52-61.

Kim, Y.H. & Park, S.J. 2011. Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Current Applied Physics 11: 462-466.

Kuo, S.L. & Wu, N.L. 2003. Composite supercapacitor containing tin oxide and electroplated ruthenium oxide. Electrochemical Solid State Letter 6: A85-A87.

Lee, H.Y. & Goodenough, J.B. 1999. Supercapacitor behaviour with KCl electrolyte. Journal of Solid State Chemistry 223: 220-223.

Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y. & Sun, Z. 2010. Electrochemical behaviours of graphene – ZnO and graphene – SnO2 composite films for supercapacitors. Electrochimica Acta 55: 4170-4173.

Macdonald, J.R. & Barsoukov, E. 2005. Impedance Spectroscopy, Theory Experiment and Applications. Canada: John Wiley & Sons, Inc.

Mallouki, M., Tran-Van, F., Sarrazin, C., Simon, P., Daffos, B., De, A., Chevrot, C. Fauvarque, J. 2006. Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage. Journal of Solid State Electrochemistry 11: 398-406.

Masarapu, C., Zeng, H.F., Hung, K.H. & Wei, B. 2009. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3: 2199-2206.

Nagarajan, N., Humadi, H. & Zhitomirsky, I. 2006. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimica Acta 51: 3039-3045.

Nagarajan, N. & Zhitomirsky, I. 2006. Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. Journal of Applied Electrochemistry 36: 1399-1405.

Nathan, T., Aziz, A., Noor, A.F. & Prabaharan, S.R.S. 2008. Nanostructured NiO for electrochemical capacitors : Synthesis and electrochemical properties. Journal of Solid State Electrochemistry 12: 1003-1009.

Pasquier, A.D., Plitz, I., Gural, J., Menocal, S. & Amatucci, G. 2003. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes. Journal of Power Sources 113: 62-71.

Sassin, M.B., Mansour, A.N., Pettigrew, K.A., Rolison, D.R. & Long, J.W. 2010. Electroless deposition of conformal nanoscale iron oxide on carbon charge storage. ACS Nano 4: 4505-4514.

Shukla, A.K., Sampath, S. & Vijayamohanan, K. 2000. Electrochemical supercapacitors: Energy storage beyond batteries. Current Science 79: 1656-1661.

Simon, P. & Gogotsi, Y. 2008. Materials for electrochemical capacitors. Nature Materials 7: 845-854.

Wang, H., Tang, Z.Y., Sun, L., He, Y.B., Wu, Y.X. & Li, Z.Y. 2009. Capacitance performance enhancement of TiO2 doped with Ni and graphite. Rare Metals 28: 231-236.

Wang, S.C., Chen, C.Y., Chien, T.C., Lee, P.Y. & Lin, C.K. 2008. Supercapacitive properties of spray pyrolyzed iron-added manganese oxide powders deposited by electrophoretic deposition technique. Thin Solid Films 517: 1234-1238.

Wang, S.Y., Ho, K.C., Kuo, S.L. & Wu, N.L. 2006. Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. Journal of the Electrochemical Society 153: A75-A80.

Wang, X., Han, X., Lim, M., Singh, N., Gan, C.L., Jan, M. & Lee, P.S. 2012. Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. The Journal of Physical Chemistry C 116: 12448-12454.

Wu, N.L., Wang, S.L. & Han, C.Y. 2003. Electrochemical capacitor of magnetite in aqueous electrolytes. Journal of Power Sources 113: 173-178.

Wu, N.L. 2002. Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics 75: 6-11.

Xie, K.Y., Li, J., Lai, Y.Q., Lu, W., Zhang, Z.A., Liu, Y.X., Zhou, L.M. & Huang, H.T. 2011. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications 13: 657-660.

Yeong, J., Liang, K., Hyeok, K. & Hee. Y. 2005. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synthetic Metals 150: 153-157.

Yuan, G.H., Jiang, Z.H., Aramata, A. & Gao, Y.Z. 2005. Electrochemical behaviour of activated-carbon capacitor material loaded with nickel oxide. Carbon 43: 2913-2917.

Zhang, S.W. & Chen, G.Z. 2008. Manganese oxide based materials for supercapacitors. Energy Materials: Materials Science and Engineering for Energy Systems 3: 186-200.  

 

*Corresponding author; email: PoiSim.Khiew@nottingham.edu.my

 

 

previous