Sains Malaysiana 44(9)(2015): 1351–1356
Pore
Interconnectivity Analysis of Porous Three Dimensional Scaffolds of Poly
(3-Hydroxybutyric Acid) (PHB) and Poly(3-Hydroxybutyric-co-3-Hydroxyvaleric
Acid) (PHBV) Through Non-Invasive Color Staining Method
(Analisis
Kebolehjaringan Liang bagi Struktur Perancah Tiga Dimensi Poly(3-Hydroxybutyric
Acid) (PHB) dan
Poly(3-Hydroxybutyric-co-3-Hydroxyvaleric Acid) (PHBV)
melalui Kaedah Pengotoran Warna tidak Invasi)
SAIFUL IRWAN ZUBAIRI1, ATHANASIOS MANTALARIS2*
& ALEXANDER BISMARCK2
1School of Chemical
Sciences & Food Technology, Faculty of Science & Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
2Department of
Chemical Engineering, Imperial College London, South Kensington Campus, London
SW7 2AZ, United Kingdom
Received: 14 November 2013/Accepted: 3 June 2015
ABSTRACT
Polyhydroxyalkanoates (PHAs) has been investigated for
more than eighty years. Ever since then, the scientists are kept on
synthesizing and developing new polymers and application to suit human
interests nowadays. The resourcefulness of PHAs
has made them a good candidates for the study of their
potential in a variety of areas from biomedical/medical fields to food,
packaging, textile and household material. In medical field (specifically in
tissue engineering application), producing a biocompatible 3-D scaffold with
adaptable physical properties are essential. However, to the best of our
knowledge, scaffolds from PHB and PHBV with
thickness greater than 1 mm have not been produced yet. In this work, PHB and PHBV porous 3-D scaffolds with an improved thickness greater than 4 mm
was fabricated using conventional method of solvent-casting
particulate-leaching (SCPL). A preliminary assessment on the
improved thickness 3-D scaffolds was carried out to examine its pore
interconnectivity by using non-invasive color staining method. The vertical
cross sections image of the stained scaffolds was analyzed by image analyzer
software. This technique was considered simple, fast and cost effective method
prior to the usage of super accurate analytical instruments (micro-computed
tomography). The results showed that over 80% of the pores have been
interconnected with the adjacent pores. Moreover, there was a good correlation
between the predicted pore interconnectivity and porosity. These results
indicated how well a simple technique can do by giving an overview of the
internal morphology of a porous 3-D structure material.
Keywords: Color staining; PHBV; PHB;
pore interconnectivity; 3-D scaffold
ABSTRAK
Polyhydroxyalkanoates (PHAs)
telah dikaji lebih dari 80 tahun yang lalu. Semenjak dari itu, para
saintis sentiasa mensintesis dan membangunkan polimer dan aplikasi baru bagi
kemudahan dan penggunaan manusia sekarang. Kepelbagaian
penggunaan PHAs telah menjadikan bahan tersebut sebagai calon yang
sesuai dalam mengkaji pelbagai potensi daripada bidang bioperubatan/perubatan
ke makanan, pembungkusan, tekstil dan bahan penggunaan di rumah. Dalam
bidang perubatan (terutama sekali dalam aplikasi kejuruteraan tisu, penghasilan
struktur perancah 3-D yang bioserasi dengan pengadaptasian ciri fizikal adalah
penting. Tetapi, sehingga kini, masih tiada lagi struktur
perancah daripada PHB dan PHBV dengan
ketebalan melebihi 1 mm dapat dihasilkan. Dalam kajian
ini, struktur perancah 3-D PHB dan PHBV dengan
penambahbaikan ketebalan melebihi 4 mm telah dapat difabrikasi menggunakan
kaedah konvensional pelarut-pembentuk larut serap partikulat (SCPL). Penilaian awalan terhadap struktur perancah 3-D telah dijalankan bagi menilai
kebolehjaringan liang menggunakan kaedah pengotoran
warna tidak invasi. Imej keratan rentas bagi struktur
perancah yang dikotorkan dianalisis menggunakan perisian penganalisis imej. Kaedah ini dianggap mudah, pantas dan kos efektif
sebelum penggunaan peralatan analitikal canggih (seperti tomografi mikro
berkomputer). Keputusan kajian menunjukkan bahawa lebih 80% liang telah dibolehjaringkan dengan liang-liang yang berdekatan. Sebagai tambahan,
terdapat kolerasi yang baik antara jangkaan kebolehjaringan liang dan keliangan. Keputusan ini memberi indikasi bahawa ia merupakan teknik yang mudah dalam memberikan gambaran awal tentang morfologi
dalaman struktur bahan perancah 3-D.
Kata kunci: Kebolehjaringan liang;
pengotoran warna; PHBV; PHB;
Struktur 3-D
REFERENCES
Cheng, S., Chen, G.Q., Leski, M., Zou,
B., Wang, Y. & Wu, Q. 2006. The
effect of d,l-β-hydroxybutyric acid on cell death
and proliferation in L929 cells. Biomaterials 27(20): 3758-3765.
Chung, C.W., Kim, H.W., Kim, Y.B. &
Rhee, Y.H. 2003. Poly(ethylene
glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood
compatibility. International Journal of Biological Macromolecules 32(1-2):
17-22.
Freeman, M. 2005. The Digital SLR Handbook. Lewes:
ILEX.
Gassner, F. & Owen, A.J. 1996. Some properties of poly(3- hydroxybutyrate)-poly(3-hydroxyvalerate) blends. Polymer
International 39(3): 215-219.
Hazaree, C., Wang, K., Ceylan, H. &
Gopalakrishnan, K. 2011. Capillary transport
in RCC: water-to-cement ratio, strength, and freeze-thaw resistance. J.
Mater. Civ. Eng. 23(8): 1181- 1191.
Lu, J.X., Flautre, B., Anselme, K., Hardouin, P., Gallur,
A., Descamps, M. & Thierry, B. 1999. Role of
interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Journal of Materials Science: Materials in Medicine 10(2):
111-120.
Lianlai, Z., Xianmo, D., Shujie, Z.
& Zhitang, H. 1997. Biodegradable
polymer blends of poly(3-hydroxybutyrate) and
poly(-D,L-lactide)-co-poly(ethylene glycol). Journal of Applied Polymer
Science 65(10): 1849-1856.
Pouton, C.W. & Akhtar, S. 1996. Biosynthetic
polyhydroxyalkanoates and their potential in drug delivery. Advanced
Drug Delivery Reviews 18(2): 133-162.
Qu, X.H., Wu, Q., Liang, J., Zou, B. & Chen, G.Q. 2006.
Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-
3-hydroxyhexanoate) on in vitro growth and differentiation of smooth
muscle cells. Biomaterials 27(15): 2944-2950.
Shi, H.L., Joost, R.D., Wijn, P.L. & Klaas, D.G. 2002.
Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. Journal
of Biomedical Materials Research 61(1): 109-120.
Siracusa, V., Rocculi, P., Romani, S.
& Rosa, M.D. 2008. Biodegradable
polymers for food packaging: A review. Trends in Food Science &
Technology 19(12): 634-643.
Tabesh, H., Amoabediny, G., Nik, N.S.,
Heydari, M., Yosefifard, M., Siadat, S.O.R. & Mottaghy, K. 2009. The role of biodegradable engineered scaffolds seeded with
Schwann cells for spinal cord regeneration. Neurochemistry International 54(2):
73-83.
Williams, S.F., Martin, D.P., Horowitz,
D.M. & Peoples, O.P. 1999. PHA
applications: addressing the price performance issue: I. Tissue engineering. International
Journal of Biological Macromolecules 25(1-3): 111-121.
*Corresponding
author; email: a.mantalaris@imperial.ac.uk
|