Sains Malaysiana 44(9)(2015): 1357–1362

 

Photoluminescence Characteristic of Magnesium Boro-Tellurite doped Eu3+ Ceramic

(Ciri Fotoluminesens bagi Magnesium Boro-Telurit dop Seramik Eu3+)

 

NUR ZU IRA BOHARI1, R. HUSSIN1*, ZUHAIRI IBRAHIM1 & HENDRIK O. LINTANG2

 

1Phosphor Research Group, Department of Physics, Faculty of Science, University Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

2Ibnu Sina Institute for Fundamental Science Studies, 81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 23 October 2014/Accepted: 5 May 2015

 

ABSTRACT

 

The series samples of xTeO2-(70-x)B2O3-30MgO with 0≤x≤30 mol% have been prepared via the solid-state reaction method. The composition sample of 30TeO2-40B2O3-30MgO were chosen as a doped sample in the composition of 100-y(30TeO2-40B2O3-30MgO)-yEu3+ with 0.2≤y≤2 mol% and were heated at 750oC. The XRD results showed that the major phase was Mg(Te2O5) while MgO(B2O3)2, MgTe6O13, Mg2(B2O5) and MgB4O7 was observed as a minor phase. The small phase of EuB2O4 and Eu2Te4O11 were detected by XRD when the composition of 30TeO2-40B2O3-30MgO were doped with 1.5% of Eu3+. The EDX analysis of 30TeO2-40B2O3-30MgO doped with 1.5% Eu3+ sample was confirmed the presence of boron (B), magnesium (Mg), tellurium (Te), oxygen (O) and europium (Eu) elements. From the FESEM images, the surface morphology of doped 1.5% Eu3+ samples was agglomerated compared with the undoped sample. The average diameter of the grain size is in the range of 50-100 μm. The emission spectra of the Eu3+-doped 30TeO2-40B2O3-30MgO ceramic consists of intense and sharp lines ranging from 550-725 nm. The luminescence spectra showed that the emission intensity of 30TeO2-40B2O3-30MgO doped with Eu3+ was enhanced with the increase of Eu3+ ion from 0.2 to 1.5 mol%, which resulted in enhancement of the red emission of the samples. The longest decay time for 30TeO2-40B2O3-30MgO doped with 1.5 mol % Eu3+ was 0.892 ms.

 

Keywords: Decay curve; magnesium boro-tellurite; photoluminescence

 

ABSTRAK

Siri sampel bagi xTeO2-(70-x)B2O3-30MgO dengan 0≤x≤30 mol% telah disediakan melalui kaedah tindak balas keadaan pepejal. Sampel dengan komposisi 30TeO2-40B2O3-30MgO telah dipilih sebagai sampel dop berkomposisi 100-y(30TeO2-40B2O3-30MgO)-yEu3+ dengan 0.2≤y≤2 mol% dan telah dipanaskan pada suhu 750oC. Keputusan XRD menunjukkan fasa major adalah Mg(Te2O5) manakala MgO(B2O3)2. MgTe6O13, Mg2(B2O5) and MgB4O7 dilihat sebagai fasa minor. Fasa yang kecil bagi Dy(BO2)3, Dy2Te4O11, EuB2O4 and Eu2Te4O11 telah dikesan oleh XRD pada komposisi 30TeO2-40B2O3-30MgO dop 1.5% Eu3+. Analisis EDX bagi sampel 30TeO2-40B2O3-30MgO dop 1.5% Eu3+ menunjukkan unsur boron (B), magnesium (Mg), telurium (Te), oksigen (O) dan europium (Eu). Daripada imej FESEM, morfologi permukaan bagi sampel dop adalah bergumpal berbanding dengan sampel tidak didop. Diameter purata bagi saiz butiran adalah dalam lingkungan 50-100 μm. Spektrum pancaran bagi Eu3+-dop 30TeO2-40B2O3-30MgO seramik terdiri garisan yang jelas dan tajam pada julat 550-725 nm. Spektra luminesens menunjukkan keamatan pancaran bagi 30TeO2-40B2O3-30MgO dop dengan Eu3+ meningkat dengan peningkatan ion Eu3+ daripada 0.2 ke 1.5 mol%, menunjukkan peningkatan pancaran merah pada sampel tersebut. Masa pereputan yang paling lama apabila didopkan dengan 1.5 mol% Eu3+ pada komposisi 30TeO2-40B2O3-30MgO adalah 0.892 ms.

 

Kata kunci: Fotoluminesens; lengkung pereputan; magnesium boro-telurit

REFERENCES

Babu, P., Seo, H.J., Jang, K.H., Kumar, K.U. & Jayasankar, C.K. 2007. Optical spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses. Journal of the Optical Society of America B 24(9): 2218-2228.

Blasse, G. & Grabmaier, B.C. 1994. Luminescence Materials. Berlin: Springer-Verlag.

Cheng, L.Y., Dan, P.G., Fei, W., Ming, Y.Z., Ai, L.Z., Xiao, Y.L., Ying, X.L., Xin, Y.L., Hai, B.B. & Yu, L.P. 2014. On the luminescent properties of Dy3+-Li2TiO3 omment on ‘Synthesis and emission analysis of RE3+ (Eu3+ or Dy3+): Li2TiO3 ceramics’. Ceramics International 40: 11465-11467.

Cui, R., Deng, C., Gong, X., Li, X. & Zhou, J. 2013. Luminescent performance of rare earths doped CaBi2Ta2O9 phosphor. Journal of Rare Earths 31(6): 546-550.

Elfayoumi, M.A.K., Farouk, M., Brik, M.G. & Elokr, M.M. 2010. Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass. J. Alloys Compd. 492(1-2): 712-716.

Fang, T.H., Hsiao, Y.J., Chang, Y.S. & Chang, Y.H. 2006. Photoluminescent characterization of KNbO3:Eu3+. Materials Chemistry and Physics 100: 418-422.

Joshi, P., Shen, S. & Jha, A. 2008. Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm. Journal of Appl. Phys. 103(8): 083543.

Kumar, G.B. & Buddhudu, S. 2009. Synthesis and emission analysis of RE3+ (Eu3+ or Dy3+): Li2TiO3 ceramics. Ceramics International 35: 521-525.

Kunimoto, T., Honma, T., Ohmi, K., Okubo, S. & Ohta, H. 2013. Detailed impurity phase investigation by X-ray absorption fine structure and electron spin resonance analyses in synthesis of CaMgSi2O6: eu phosphor. Japanese Journal of Applied Physics 52: 042402.

Li, S., Xu, D., Shen, H., Zhou, J. & Fan, Y. 2012. Synthesis and Raman properties of magnesium borate micro/nanorods. Materials Research Bulletin 47: 3650-3653.

Lupei, V., Lupei, A. & Ikesue, A. 2005. Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl. Phys. Lett. 86: 111-118.

Meng, F.G., Zhang, X.M., Li, H. & Seo, H.J. 2012. Synthesis and spectral characteristics of La2MoO6: Ln3+ (Ln=Eu, Sm, Dy, Pr, Tb) polycrystals. J. Rare Earths 30(9): 866-870.

Mohr, D., Andrea, S.S., Camargo, D., Schneider, J.F., Quieroz, T.B., Eckert, H., Botero, E.R., Garcia, D. & Eiras, J.A. 2008. Solid state NMR as a new approach for the structural characterization of rare earth doped lead lanthanum Zirconate titanate laser ceramics. Solid State Sci. 10: 1401-1407.

Oikawa, M. & Fujihara, S. 2005. Sol-gel preparation and luminescence properties of CeO2: Ln (Ln = Eu3+ and Sm3+) thin films. Journal of European Ceramic Society 25: 2921- 2924.

Rao, B.V., Rambabu, U. & Buddhudu, S. 2008. Photoluminescence spectral analysis of Eu3+: Phosphors. Physica B 382: 86-91.

Sun, Y.H. & Fu, Y.X. 2012. Synthesis and characteristics of nano-size sandwich structure (Y,Gd)BO3: Eu3+ phosphors. J. Luminescence 132: 550-557.

Tian, Y., Qi, X., Wu, X., Hu, R. & Chen, B. 2009. Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via co-precipitation method. J. Phys. Chem. C 113: 10767-10772.

Visser, O., Visscher, L., Aerts, P.J.C. & Nieuwpoort, W.C. 1992. Molecular open shell configuration interaction calculations using the Dirac-Coulomb Hamiltonian: The f6-manifold of an embedded EuO69-cluster. J. Chem. Phys. 96(4): 2910.

Yanmin, Y., Baojiu, C., Cheng, W., Guozhong, R. & Xiaojun, W. 2007. Investigation of modification effect of B2O3 component on optical spectroscopy of Er3+ doped tellurite glasses. J. Rare Earths 25(1): 31-35.

 

 

*Corresponding author; email: roslihussin@utm.my

 

 

 

previous