Sains Malaysiana 45(3)(2016): 383–392

Improving the Productivity of Acid Sulfate Soils for Rice Cultivation using Limestone, Basalt, Organic Fertilizer and/or their Combinations

(Meningkatkan Produktiviti Tanah Asid Sulfat Tanaman Padi menggunakan Batu Kapur,

Basalt, Baja Organik dan/atau Gabungannya)

 

J. SHAMSHUDDIN*, Q.A. PANHWAR, M.A.R.S. SHAZANA, A.A. ELISA, C.I. FAUZIAH  

& U.A. NAHER

 

Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 23 January 2015/Accepted: 23 September 2015

 

 

ABSTRACT

Acid sulfate soils are generally not suitable for the crop production unless they are efficiently improved. A study was conducted to improve the productivity of acid sulfate soils for rice cultivation using ground magnesium limestone (GML), basalt and organic fertilizer. The study was conducted on rice in laboratory, glasshouse and field. The pH of acid sulfate soils was low and exchangeable Al was very high which affected rice growth. The application of GML and basalt increased soil pH and reduced Al toxicity. GML required to ameliorate the soils for rice cultivation was 4 t ha-1. Basalt in combination with organic fertilizer was a good soil amendment, but required to be applied a few months ahead of rice cultivation. Due to GML or basalt application, rice plants grew well even though water pH was below 5. The highest rice yield obtained was 4.0 t ha-1 season-1 for Sulfaquepts and it was 7.5 t ha-1 season-1 for Sulfosaprists. In general, the application of GML or basalt in combination with organic fertilizer improved the productivity of acid sulfate soils and consequently enhanced rice yield.

 

Keywords: Acid sulfate soil; aluminum toxicity; iron toxicity; rice production; soil amendments

 

ABSTRAK

Asid tanah sulfat secara amnya tidak sesuai untuk pengeluaran tanaman kecuali ditambah baik secara cekap. Suatu kajian telah dijalankan untuk meningkatkan produktiviti tanah sulfat asid untuk penanaman padi menggunakan batu kapur magnesium (GML), basalt dan baja organik. Kajian telah dijalankan ke atas tanaman padi di dalam makmal, rumah kaca dan lapangan. pH tanah adalah rendah dan pertukaran Al yang sangat tinggi memberi kesan kepada pertumbuhan padi. Aplikasi GML dan basalt ini meningkatkan pH tanah dan mengurangkan ketoksikan Al. GML yang diperlukan untuk memperbaiki tanah bagi penanaman padi adalah 4 t ha-1. Gabungan basalt dengan baja organik adalah baik untuk memperbaiki keadaan tanah tetapi perlu diletakkan beberapa bulan lebih awal sebelum padi ditanam. Penggunaan GML dan basalt menyebabkan tanaman padi menbesar dengan baik walaupun pH air adalah di bawah 5. Untuk Sulfaquepts, hasil padi tertinggi yang diperoleh ialah 4.0 t ha-1 musim-1 manakala bagi Sulfosaprists adalah 7.5 t ha-1 musim-1. Pada amnya, aplikasi GML atau basalt bersama baja organik akan meningkatkan produktiviti tanah asid sulfat sekaligus meningkatkan hasil padi.

 

Kata kunci: Ketoksikan aluminium; ketoksikan ferum; penambahbaikan tanah; pengeluaran padi; tanah asid sulfat

REFERENCES

Abed-Ashtiani, F., Kadir, J., Selamat, A., Ahmad Husni, M.H. & Nasihi, A. 2012. Effects of foliar and root application of Si against rice blast fungus in MR 219 rice variety. Plant Pathol. J. 28(2): 164-171.

Alva, A.K., Asher, C.J. & Edwards, D.G. 1986. The role of calcium in alleviating aluminum toxicity. Aust. J. Soil Res. 37: 375-383.

Bokhtiar, S.M., Hai-Rong, H., Yang-Rui, L. & Delvi, V.A. 2010. Effect of silicon on yield contributing parameters and its accumulation in abaxial epidermis of sugarcane leaf blades using energy dispersive X-ray analysis. J. Plant Nut. 8(35): 1255-1275.

Bray, R.H. & Kurtz, L.T. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59: 39-45.

de Coninck, F. 1978. Physico-chemical aspects of Pedogenesis. International Training Center for Post-Graduate Soil Scientists, Ghent University, Ghent, Belgium (Unpublished).

Dent, D.L. 1986. Acid Sulfate Soil: A Baseline for Research and Development. Wageningen, the Netherlands: ILRI. Publication.

Dobermann, A. & Fairhurst, T. 2000. Rice: Nutrient Disorders and Nutrient Management. Los Banos, the Philippines: Phosphate Institute of Canada and International Rice Research Institute.

Enio, M.S.K., Shamshuddin, J., Fauziah, C.I. & Husni, M.H.A. 2011. Pyritization of the coastal sediments in the Kelantan Plains in the Malay Peninsula during the Holocene. Am. J. Agri. Biol. Sci. 6: 393-402.

Horst, W.J., Rangel, A.F., Eticha, D., Ischitani, M. & Rao, I.M. 2009. Aluminum toxicity and resistance in Phaseolus vulgaris L. – Physiology drives molecular biology. In Proc. 7th International Symposium on Plant-Soil at Low pH, edited by Liao, H., Xian, X. & Kochian, L. China: South China University of Technology Press. pp. 53-54.

Ismail, H., Shamshuddin, J. & Syed Omar, S.R. 1993. Alleviation of soil acidity in a Malaysian ultisol and oxisol for corn growth. Plant Soil 151: 55-65.

Liew, Y.A., Syed Omar, S.R., Husni, M.H.A., Zainal Abidin, M. & Abdullah, N.A.P. 2010. Effects of micronutrient fertilizers on the production of MR 219 rice (Oryza sativa L.). Malays. J. Soil Sci. 14: 71-82.

Ljung, K., Maley, F., Cook, A. & Weinstein, P. 2009. Acid sulfate soils and human health-a millennium ecosystem assessment. Environ. Inter. 35: 1234-1242.

Muhrizal, S., Shamshuddin, J., Che Fauziah, I. & Husni, M.H.A. 2006. Changes in an iron-poor acid sulfate soil upon submergence. Geoderma 131: 110-122.

Muhrizal, S., Shamshuddin, J., Husni, M.H.A. & Fauziah. I. 2003. Alleviation of aluminum toxicity in an acid sulfate soil in Malaysia using organic materials. Commun. Soil Sci. Plant Anal. 34: 2993-3011.

Nagabovanalli, P.B., Chowdappa, N., Nagapa, C., Abbinaholalu, M.C., Thubinakere, H.H. & Siddanagouda, P.U. 2009. Effects of calcium silicate as a source of silicon and as amendment on growth and yield of rice in coastal zone soils of Karnataka, South India. In Proc. 7th International Symposium on Plant- Soil at Low pH, edited by Liao, H., Xian, X. & Kochian, L. China: South China University of Technology Press. pp. 170-171.

Ohki, K. 1986. Phothosynthesis, chlorophyll, and transpiration responses in aluminum stressed wheat and sorghum. Crop Sci. 26: 572-575.

Palhares, M. 2000. Recommendation for fertilizer application for soils via qualitative reasoning. J. Agri. Syst. 67: 21-30.

Poon, Y.C. & Bloomfield, C. 1977. The amelioration of acid sulfate soils with respect to oil palm. Tropic. Agric. (Trinidad) 54: 289-305.

Ridolfi, M. & Garrec, J.P. 2000. Consequences of the excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Annal. Sci. 57: 209-218.

Sasaki, M., Yamamoto, Y., Ma, J.F. & Matsumoto, H. 1997. Early events induced by aluminum stress in elongating cells of wheat root. Soil Sci. Plant Nut. 43: 1009-1014.

Shamshuddin, J. & Che Fauziah, I. 2010. Alleviating acid soil infertility constraints using basalt, ground magnesium limestone and gypsum in a tropical environment. Malays. J. Soil Sci. 14: 1-13.

Shamshuddin, J., Shariduddin, H.A.H., Che Fauziah, I., Edwards, D.G. & Bell, L.C. 2010. Temporal changes in chemical properties of acid soil profiles treated with magnesium limestone and gypsum. Pertanika J. Tropic. Agri. Sci. 33: 277-295.

Shamshuddin, J., Muhrizal, S., Che Fauziah, I. & van Ranst, E. 2004. A laboratory study of pyrite oxidation in an acid sulfate soils. Commun. Soil Sci. Plant Anal. 35: 117-129.

Shamshuddin, J., Jamilah, I. & Ogunwale, J.A. 1995. Formation of hydroxyl-sulfates from pyrite in coastal acid sulfate soil environments in Malaysia. Commun. Soil Sci. Plant Anal. 26: 2769-2782.

Shamshuddin, J. & Ismail, H. 1995. Reactions of ground magnesium limestone and gypsum in soil soils with variable-charge minerals. Soil Sci. Soc. Am. J. 59: 106-112.

Shamshuddin, J., Che Fauziah, I. & Sharifuddin, H.A.H. 1991. Effects of limestone and gypsum application to a Malaysian ultisol on soil solution composition and yields of maize and groundnut. Plant Soil 134(1): 45-52.

Shamshuddin, J. & Auxtero, E.A. 1991. Soil solution composition and mineralogy of some active acid sulfate soil as affected by laboratory incubation with lime. Soil Sci. 152: 365-376.

Shazana, M.A.R.S., Shamshuddin, J., Fauziah, C.I. & Syed Omar, S.R. 2013. Alleviating the infertility of an acid sulphate soil by using ground basalt with or without lime and organic fertilizer under submerged condition. Land Degrad. Develop. 24: 129-140.

Soo, S.W. 1975. Semi-detailed Soil Survey of Kelantan Plain. Kuala Lumpur: Ministry of Agriculture & Rural Development.

Suswanto, T., Shamshuddin, J., Syed Omar, S.R., Mat, P. & Teh, C.B.S. 2007. Alleviating an acid sulfate soil cultivated to rice (Oryza sativa) using ground magnesium limestone and organic fertilizer. J. Soil Environ. 9: 1-9.

Ting, C.C., Rohani, S., Diemont, W.S. & Aminuddin, B.Y. 1993. The development of an acid sulfate area in former mangroves in Merbok, Kedah, Malaysia. In Proc. Selected Paper of the Ho Chi Minh City Symposium on Acid Sulfate Soils, edited by Dent, D.L. & van Mensvoort, M.F.F. the Netherlands: Wageningen. pp. 95-101.

Tran, K.T. & Vo, T.G. 2004. Effects of mixed organic and inorganic fertilizers on rice yield and soil chemistry of the 8th crop on heavy acid sulfate soil (Hydraquentic Sulfaquepts) in the Mekong Delta of Vietnam. Proc. 6th International Symposium on Plant-Soil at Low pH. 1-5 August, Sendai, Japan.

Yap, C.L. 2012. Major Issues of Concern for World Rice Economy in the Medium Term: An Economic Perspective. International Rice Commission Newsletter. Available at: http://fao.org/ docrep/v6017t/V6017T01. Accessed on 6th June 2014.

 

 

*Corresponding author; email: shamsud@upm.edu.my

 

 

 

 

previous