Sains Malaysiana 45(3)(2016): 393–400
An Evaluation of Fermentation Period and
Discs Rotation Speed of Rotary Discs Reactor for Bacterial Cellulose
Production
(Penilaian Tempoh Penapaian dan Kelajuan
Putaran Cakera melalui Reaktor Cakera Berputar untuk Pengeluaran
Selulosa Bakteria)
KHAIRUL AZLY
ZAHAN1,3,
NORHAYATI
PA’E1
& IDA IDAYU MUHAMAD1,2*
1Bioprocess Engineering
Department, Faculty of Chemical Engineering, Universiti Teknologi
Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
2Cardio Engineering
Centre IJN-UTM, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor Darul Takzim, Malaysia
3Section of Bioengineering
Technology, Malaysian Institute of Chemical and Bioengineering Technology,
Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka Bandar Bersejarah,
Malaysia
Received: 6 January
2015/Accepted: 1 September 2015
ABSTRACT
Acetobacter xylinum strains
are known as efficient producers of cellulose. A. xylinum is
an obligate aerobic bacterium that has an oxygen-based metabolism.
The dissolved oxygen (DO)
concentration in a rotary discs reactor (RDR) is one of the most important
factors that need to be observed during the cellulose synthesis
by these bacteria. In this study, the effects of different discs
rotation speed (5, 7, 9 and 12 rpm) and fermentation period (3,
4, 5 and 6 days) on the DO
concentration and production of bacterial cellulose
in a 10-L RDR were
examined. The highest yield was obtained at 7 rpm with a total dried
weight of 28.3 g for 4 days fermentation. The results showed that
the DO concentration
in the 10-L RDR increased in the range of 13 to 17% with increasing
of discs rotation speed from 7 to 12 rpm. However, fermentation
with high discs rotation speed at 12 rpm reduced the bacterial cellulose
production. Analysis of data using Statistica 8.0 showed a high
coefficient of determination value (R2 =
0.92). In conclusion, discs rotation speed gave more significant
effect on the DO
concentration and production of bacterial cellulose
in 10-L RDR compared to fermentation
period. This was further combined with synergistic
effect from sufficient consumption of oxygen for the enhanced production
of bacterial cellulose and providing the controlled environment
for encouraging bacterial growth throughout the fermentation process.
Keywords: Acetobacter
xylinum; bacterial cellulose; discs rotation speed; dissolved
oxygen; fermentation period; rotary discs reactor (RDR)
ABSTRAK
Strain Acetobacter
xylinum dikenali sebagai pengeluar selulosa yang cekap. A.
xylinum adalah bakteria aerobik yang mempunyai metabolisme berasaskan
oksigen. Kepekatan oksigen terlarut (DO) di dalam reaktor cakera berputar
(RDR)
adalah salah satu faktor terpenting yang perlu diperhatikan semasa
pengeluaran selulosa oleh bakteria ini. Dalam kajian ini, kesan
daripada kelajuan putaran cakera yang berbeza (5, 7, 9 dan 12 rpm)
dan tempoh penapaian (3, 4, 5 dan 6 hari) terhadap kepekatan oksigen
terlarut (DO)
dan jumlah pengeluaran selulosa di dalam 10-L RDR telah
dikaji. Hasil tertinggi telah diperoleh pada kelajuan putaran cakera
7 rpm dengan jumlah berat kering sebanyak 28.3 g selama 4 hari penapaian.
Keputusan juga menunjukkan bahawa kepekatan oksigen terlarut (DO)
di dalam 10-L RDR meningkat dalam julat 13 hingga 17% dengan peningkatan
kelajuan putaran antara 7 hingga 12 rpm. Walau bagaimanapun, penapaian
dengan kelajuan cakera yang tinggi iaitu pada 12 rpm menyebabkan
pengeluaran selulosa berkurangan. Analisis data menggunakan Statistica
8.0 menunjukkan pekali nilai penentuan (R2 =
0.92) yang tinggi. Kesimpulannya, kelajuan putaran cakera memberikan
kesan yang lebih besar terhadap kepekatan oksigen terlarut dan penghasilan
selulosa di dalam 10-L RDR berbanding tempoh penapaian. Ini seterusnya digabungkan
dengan kesan sinergistik daripada penggunaan oksigen yang mencukupi
bagi meningkatkan pengeluaran selulosa dan menyediakan persekitaran
terkawal untuk menggalakkan pertumbuhan bakteria sepanjang proses
penapaian.
Kata kunci: Acetobacter xylinum; kelajuan putaran cakera; oksigen terlarut;
reaktor cakera berputar (RDR); selulosa bakteria;
tempoh penapaian
REFERENCES
Brown, A.J. 1886.
On an acetic ferment which form cellulose. Journal of the Chemical
Society, Faraday Transactions 49: 432-439.
Chao, Y., Sugano,
Y. & Shoda, M. 2001. Bacterial cellulose production under oxygen
enriched air at different fructose concentrations in 50 liters internal
loop airlift bioreactor. Applied and Microbial Biotechnology
55(6): 673-679.
Chawla, P.R., Bajaj,
I.B., Survase, S.A. & Singhal, R.S. 2008. Microbial cellulose:
Fermentative production and applications. Food Technology Biotechnology
47(2): 107-124.
Fontana, J.D.,
deSouza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti,
B.J., deSouza, S.J., Narcisco, G.P., Bichara, J.A. & Farah,
L.F.X. 1990. Acetobacter cellulose pellicle as a temporary
skin substitute. Applied Biochemistry and Biotechnology 24(25):
253-263.
Hestrin, S. &
Schramm, M. 1954. Factors effecting production of cellulose at the
air/liquid interface of a culture of Acetobacter xylinum. Journal
of General Microbiology 11(1): 123-129.
Hwang, J.W., Yang,
Y.K., Hwang, J.K., Pyun, R.Y. & Kim, Y.S. 1999. Effects of pH
and dissolved oxygen on cellulose production by Acetobacter xylinum
BRC5 in agitated culture. Journal of Bioscience and Bioengineering
88(2): 183-188.
Joglekar, A.M.
& May, A.T. 1987. Product excellence through design of experiments.
Cereal Food World 32: 857-868.
Jung, J.Y., Khan,
T., Park, J.K. & Chang, H.N. 2007. Production of bacterial cellulose
by Gluconacetobacter hansenii using a novel bioreactor equipped
with a spin filter. Korean Journal of Chemical Engineering 24(2):
265-271.
Jung, W.H., Young,
K.Y., Jae, K.H., Yu, R.P. & Yu, S.K. 1999. Effects of pH and
dissolved oxygen on cellulose production
by Acetobacter xylinum BRCS in agitated culture. Journal
of Bioscience and Bioengineering 88(2): 183-188.
Kim, S.Y., Kim,
J.N., Wee, Y.J., Park, D.H. & Ryu, H.W. 2007. Bacterial cellulose
production by Gluconacetobacter sp. RKY5 in a rotary
biofilm contactor. Applied Biochemistry and Biotechnology 137(1-12):
529-537.
Kouda, T., Yano,
H. & Yoshinaga, F. 1997. Effect of agitator configuration on
bacterial cellulose productivity in aerated and agitated culture.
Journal of Fermentation and Bioengineering 83(4): 371-376.
Krystynowicz, A.,
Koziołkiewicz, A., Wiktorowska, J.A., Bielecki, S., Klemenska,
E., Masny, A. & Płucienniczak, A. 2005. Molecular basis
of cellulose biosynthesis disappearance in submerged culture of
Acetobacter xylinum. Acta Biochimia Polonica 52(3):
691-698.
Krystynowicz, A.,
Czaja, W., Wiktorowska-Jezierska, A., Goncalves-Miskiewicz, M.,
Turkiewicz, M. & Bielecki, S. 2002. Factors affecting the yield
and properties of bacterial cellulose. Journal of Industrial
Biotechnology 29(4): 189- 195.
Ougiya, I.I., Watanabe,
K., Morinaga, Y. & Yoshinaga, F. 1997. Emulsion effect of bacterial
cellulose. Biosci. Biotech. Biochem 61: 1541-1545.
Pa’e, N., Zahan,
K.A. & Muhamad, I.I. 2011. Production of biopolymer from Acetobacter
xylinum using different fermentation methods. International
Journal of Engineering & Technology IJET-IJENS 11(5): 90-98.
Quoc, L.P.T., Xinh,
N.T.K., Nguyet, H.T.K. & Xuyen, N.T.H. 2012. Application of
response surface methodology (RSM) in condition optimization for
essential oil production from Citrus latifolia. Emir. J. Food
Agric. 24(1): 25-30.
Ruka, D.R., Simon,
G.P. & Dean, K.M. 2012. Altering the growth conditions of Gluconacetobacter
xylinus to maximize the yield of bacterial cellulose. Carbohydrate
Polymers 89(2): 613-622.
Shoda, M. &
Sugano, Y. 2005. Recent advances in bacterial cellulose production.
Biotechnol. Bioprocess. Eng. 10: 1-8.
Suwannapinunt,
N., Burakorn, J. & Thaenthanee, S. 2007. Effect of culture conditions
on bacterial cellulose (BC) production from Acetobacter xylinum
TISTR976 and physical properties of BC parchment paper. Journal
of Science Technology 14(4): 357-365.
Zahan, K.A., Pa’e,
N. & Muhamad, I.I. 2015. Monitoring the effect of pH on bacterial
cellulose production and Acetobacter xylinum 0416 growth
in a rotary discs reactor. The Arabian Journal for Science and
Engineering 40(7): 1881-1885.
Zahan, K.A., Pa’e,
N. & Muhamad, I.I. 2014. Process parameters for fermentation
in a rotary disc reactor for optimum microbial cellulose production
using response surface methodology. BioResources 9(2): 1858-1872.
Zahan, K.A. 2014.
Process parameters for microbial cellulose production by Acetobacter
xylinum in rotary disc reactor. Master Degree Thesis, Faculty
of Chemical Engineering, Universiti Teknologi Malaysia, Skudai,
Johor (Unpublished).
Zeng, X., Small,
D.P. & Wan, W. 2011. Statistical optimization of culture conditions
for bacterial cellulose production by Acetobacter xylinum BPR
2001 from maple syrup. Carbohydrate Polymers 85(3): 506-513.
*Corresponding author; email: idayu@cheme.utm.my
|