Sains Malaysiana 45(3)(2016): 467–476
Removal of Heavy Metals and Production
of Bioethanol by Green Alga Scenedesmus obliquus Grown in
Different Concentrations of Wastewater
(Penyingkiran Logam Berat dan Pengeluaran
Bioetanol oleh Alga Hijau Scenedesmus obliquus Hidup dalam
Pelbagai Kepekatan Air Sisa)
RAGAA A.
HAMOUDA1*
DALIA S. YEHEIA1, MERVAT H. HUSSEIN2 &
HANAFY A. HAMZAH1
1Microbial Biotechnology
Department, Genetic Engineering and Biotechnology Research Institute
University
of Sadat City, Egypt
2Botany Department,
Faculty of Science, Mansoura University, Egypt
Received: 05 July
2015/Accepted: 24 September 2015
ABSTRACT
Algae have recently received
a lot of attention as a new biomass source for the production of
renewable energy and an important bioremediation agent. This study
was carried out to evaluate the potential of green algae Scenedesmus obliquus grow
in different concentrations of wastewater and the improvement of
cultivation conditions to produce biomass rich in sugar to produce
bioethanol by fermentation processes. The highest sugar content
of S. obliquus biomass was recorded for algae cultivated
with 40 and 85% wastewater after 9 days under aeration condition
with dark and light duration (44.5%). It was found that the highest
removal efficiency of BOD and COD were
18% for S. obliquus grown under aeration condition. The highest
ethanol efficiency of S. obliquus biomass hydrolysate was
20.33% at 4th day. The best condition of S. obliquus to grow
efficiently was under aeration with light and dark durations, where
it has high efficiency to remove heavy metals from wastewater in
this condition.
Keywords: Bioethanol; culture
condition; fermentation; heavy metals; Scenedesmus
obliquus; wastewater treatments
ABSTRAK
Alga pada masa ini telah mendapat
perhatian sebagai sumber biojisim baru untuk penghasilan tenaga
boleh baharu dan sebagai agen penting biopemulihan. Penyelidikan
ini dijalankan untuk menilai potensi alga hijau Scenedesmus obliquus membesar dalam
pelbagai kepekatan air sisa dan dalam penambahbaikan keadaan penanaman
untuk menghasilkan biojisim yang kaya dengan gula untuk menghasilkan
bioetanol melalui proses penapaian. Kandungan gula tertinggi daripada
biojisim S. obliquus direkodkan sebagai alga yang ditanam
menggunakan 40 dan 85% air sisa selepas 9 hari di bawah keadaan
pengudaraan dengan tempoh gelap dan terang (44.5%). Didapati bahawa
kecekapan penyingkiran tertinggi BOD dan
COD
adalah 18% untuk S. obliquus membesar di bawah
keadaan pengudaraan. Kecekapan tertinggi etanol hidrolisat biojisim
S. obliquus adalah 20.33% pada hari ke-4. Keadaan terbaik
untuk S. obliquus membesar dengan cekap adalah di bawah keadaan
pengudaraan dengan tempoh terang dan gelap dan mempunyai kecekapan
tinggi untuk membuang logam berat daripada buangan dalam keadaan.
Kata kunci: Bioetanol; keadaan budaya; logam berat; penapaian; rawatan
air kumbahan; Scenedesmus obliquus
REFERENCES
Abdel
Hameed, M.S. 2007. Effect of algal density in bead, bead size and
bead concentrations on wastewater nutrient removal. African Journal
of Biotechnology 6: 1185-1191.
An,
J.Y., Sim, S.J. & Kim, B.W. 2003. Hydrocarbon production from
secondarily treated piggery wastewater by green alga Botryococcus
braunii. Journal of Applied Phycology 15: 185-191.
Andrew,
D.E., Lenore, S.C., Engene, W.R. & Arnold, E.G. 2005. Standard
Methods for the Examination of Water and Wastewater. 21st ed.
pp. 6010-6651.
APHA,
AWWA & WEF. 2005. Standard Methods for the Examination of
Water and Wastewater. 21st ed. Washington, DC, USA: APHA. pp.
258-259.
Aksu,
Z. & Kustal, T.A. 1991. Bioseparation process for removing lead
ions from wastewater by using Chlorella vulgaris. Journal of
Chemical Technology and Biotechnology 52: 109-118.
Atlas, R.M. & Park, L.C. 1993. Handbook of Microbiological Media. Boca
Raton, Fl.: CRC Press. p. 1079.
Binder,
J.B. & Raines, R.T. 2010. Fermentable sugars by chemical hydroysis
of biomass. Proceeding of the National Academy of Sciences of
the United States of America 107(10): 4516-4521.
Bouterfas, R., Belkoura, M. & Dauta, A. 2006. The effects of
irradiance and photoperiod on the growth rate of three freshwater
green algae isolated from a eutrophic lake. Limnetica 25:
647-656.
Brennan, L. & Owende, P. 2010. Biofuels from Microalgae
- a review of technologies for production, processing and extraction
of biofuels and co-products. Renewable and Sustainable Energy
Review 14: 557-577.
Caputi, A., Ueda,
J.M. & Brown, T. 1968. Spectrophotometric determination of chromic
complex formed during oxidation of alcohol. American Journal
of Enology and Viticulture 19: 160-165.
Caylak, B. &
Sukan, F.V. 1998. Comparison of different production processes for
bioethanol. Turkish Journal of Chemistry 22: 351-359.
Chen, B., Huang,
Q., Lin, X., Shi, Q. & Wu, S. 1998. Accumulation of Ag, Cd,
Co, Cu, Hg, Ni and Pb in Pavlova viridis Tseng (Haptophyceae).
Journal of Applied Phycology 10(4): 371-376.
Craggs, R.J., Smith,
V.J. & McAuley, P.J. 1995. Wastewater nutrient removal by Deutsche.
Science Technology 31: 151-160.
Deutsche, E.Z.
& Abwasser, W. 1960. Schlammuntersuchung. 3rd ed. Weinheim:
Springer-Verlag.
Dubois, M., Gilles,
K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. 1956. Colorimetric
method for determination of sugars and related substances. Analytical
Chemistry 28: 350-356.
Gates, W.E. &
Borchardt, J.A. 1964. Nitrogen and phosphorus extraction from domestic
wastewater treatment plant effluents by controlled algal culture.
Journal of the Water Pollution Control Federation 36: 443-462.
Gupta, V.K. &
Rastogi, A. 2008. Biosorption of lead from aqueous solutions by
green algae Spirogyra species: Kinetics and equilibrium studies.
Journal of Hazardous Materials 152: 407-414.
Hodaifa, G., Martinez,
M.E., Ơrpez, R. & Snchez, S. 2010. Influence of hydrodynamic
stress in the growth of Scenedesmus obliquus using a culture
medium based on olive-mill wastewater. Journal of Chemical Engineering
Processing: Process Intensification 49: 1161-1168.
Hodaifa, G., Martínez,
M.E. & Sánchez, S. 2009. Daily doses of light in relation to
the growth of Scenedesmus obliquus in diluted three-phase
olive mill wastewater. Journal of Chemical Technology and Biotechnology
84: 1550-1558.
Hodaifa, G., Martínez,
M.E. & Sánchez, S. 2008. Use of industrial wastewater from olive-oil
extraction for biomass production of Scenedesmus obliquus.
Bioresource Technology 99: 1111- 1117.
Krishnaveni, S.,
Balasubramanian, T. & Sadasivam, S. 1984. Sugar distribution
in sweet stalk sorghum. Food Chemistry 15: 229-232.
Larsdotter, K.
2006. Wastewater treatment with microalgae: A literature review.
Journal of Water Management and Research 62: 31-38.
Lau, P.S., Tam,
N.F.Y. & Wong, Y.S. 1998. Effect of Carrageenan immobilization
on the physiological activities of Chlorella vulgaris. Bioresourse
Technology 63: 115-121.
Lau, P.S., Tam,
N.F.Y. & Wong, Y.S. 1997. Wastewater nutrients (N and P) removal
by carrageenan and alginate immobilized Chlorella vulgaris.
Bioresourse Technology 18: 945-951.
Laval, D. &
Mazliak, P.M. 1995. Nutrition
Etmétabolisme (Physiologie végétale).
Hermann (ed). Paris. p. 539.
Lee, K. & Lee,
C.G. 2001. Effect of light/dark cycles on wastewater treatment by
microalgae. Biotechnology Bioprocess Engineering Journal 6:
194-199.
Markou, G., Angelidaki,
I., Nerantzis, E. & Georgakakis, D. 2013. Bioethanol production
by carbohydrate-enriched biomass of Arthrospira (Spirulina) Platensis
Energies 6: 3937-3950.
Martinez, M.E.,
Sanchez, S., Jimenez, J.M., Yousfi, F.E. & Munoz, L. 2000. Nitrogen
and phosphorus removal from urban wastewater by the microalga Scenedesmus
obliquus. Bioresource Technology 73: 263-272.
Mercado, J.M.,
Sánchez-Saavedra, M.P., Correa-Reyes, J.G., Lubián, L., Montero,
O. & Figueroa, F.L. 2004. Blue light effect on light absorption
characteristics and photosynthesis of five benthic diatom species.
Aquatic Botany 78: 265-277.
Miranda, J.R.,
Passarinho, P.C. & Gouveia, L.M. 2012a. Pre-treatment optimization
of Scenedesmus obliquus microalga for bioethanol production.
Bioresource Technology 104: 342-348.
Miranda, J.R.,
Passarinho, P.C. & Gouveia, L.M. 2012b. Bioethanol production
from Scenedesmus obliquus sugars: The influence of photobioreactors
and culture conditions on biomass production. Journal of Applied
Microbiology Biotechnology 96: 555-564.
Nguyen, Thi Hong
Minh & Vu, Van Hanh. 2012. Bioethanol production from marine
algae biomass: Prospect and troubles. Journal of Vietnamese Environment
3(1): 25-29.
Oswald, W.J. 2003.
My sixty years in applied algology. Journal of Applied Phycology
15: 99-106.
Picot, B., El-Halouani,
H., Casellas, C., Moresidik, S. & Bontoux, J. 1991. Nutrient
removal by high rate pond system in a Mediterranean climate (France).
Water Science Technology 23: 1535-1541.
Richmond, A. &
Grobbelaar, J.U. 1986. Factors affecting the output rate of Spirulina
platensis with reference to mass cultivation. Biomass 10:
253-264.
Rippka, R., Deruelles,
J., Waterbury, J., Herdman, M. & Stanier, R. 1979. Generic assignments,
strain histories and properties of pure cultures of cyanobacteria.
Journal of General Microbiology 111: 1-61.
Rocha, J.M.S.,
Garcia, J.E.C. & Henriques, M.H.F. 2003. Growth aspects of the
marine microalga Nannochloropsis gaditana. Bimolecular
Engineering 20: 237- 242.
Seyfabadi, J.,
Ramezanpour & Amini, K.Z. 2011. Protein, fatty acid, and pigment
content of Chlorella vulgaris under different light regimes.
Journal of Applied Phycology 23: 721-726.
Sivasubramanian,
V. 2009. Current status of research on algal bio-fuels in India.
Journal Algal Biomass Utilization 1: 1-8.
Staniszewski, M.,
Kujawski, W. & Lewandowska, M. 2009. Semi-continuous ethanol
production in bioreactor from whey with co-immobilized enzyme and
yeast cells followed by pervaporative recovery of product – Kinetic
model predictions considering glucose repression. Journal of
Food Engineering 91: 240-249.
Stengel, E. 1970.
Anlagen typen and Verfahren der technischen Algenmassen production.
Berichte der Deutschen Botanischen Gesellschaft 83: 589-606.
Travieso, L., Benítez,
F., Sánchez, E., Borja, R., León, M., Raposo, F. & Rincón, B.
2008. Assessment of a microalgae pond for post-treatment of the
effluent from an anaerobic fixed bed reactor treating distillery
wastewater. Environmental Technology 29: 985-992.
Ukeles, R. 1971.
Nutritional requirements in shellfish culture. In: Proceedings
of the Conference on Artificial Propagation of Commercially Valuable
Shellfish, Oct. 22-23, 1969. College of Marine Studies, University
of Delaware, Newark, Delaware.
Venkataraman,
G.S. 1969. Algal inoculation in rice fields. In Nitrogen and
Rice, edited by IRRI. International Rice Research Institute,
USA. pp: 311-321.
Weidang, A., Shuang-Sheng, G., Yong-Kang, T. & Li-Feng,
Q. 2008. Study of selecting on light source used for Micro-algae
cultivation in space. 37th, COSPAR Scientific Assembly.
Wetherell, D.F.
1961. Culture of fresh water algae in enriched natural seawater.
Physiologia Plantarum 14(1): 1-6.
Wijffels, R.H.
& Barbosa, M.J. 2010. An outlook on microalgal biofuels. Science
329: 796-799.
Wu, F.C., Tseng,
R.L. & Juang, R.S. 1999. Role of pH in metal adsorption for
aqueous solutions containing chelating agents on chitosan. Industrial
& Engineering Chemistry Research 38(1): 270-275.
Yeh, R.S., Wang,
Y.Y. & Wan, C.C. 1995. Removal of Cu-EDTA compounds via electrochemical
process with coagulation. Water Research 29: 597-599.
*Corresponding author; email: ragaahom@yahoo.com
|