Sains Malaysiana 45(3)(2016): 459–465
Pengaruh Suhu Sinter terhadap Prestasi
Elektrokimia Katod Komposit Sel Bahan Api Oksida Pepejal (SOFC)
LSCF-SDCC
(Effects of Sintering Temperature on the
Electrochemical Performance of Solid Oxide Fuel Cell (SOFC)
composite cathode LSCF-SDCC)
NURUL
AKIDAH
BAHARUDDIN,
ANDANASTUTI
MUCHTAR*,
MAHENDRA
RAO
SOMALU,
ABU BAKAR
SULONG
& HUDA ABDULLAH
Institut
Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received: 17 March 2015/Accepted:
10 December 2015
ABSTRAK
Kertas kajian ini membincangkan
kesan suhu pensinteran ke atas prestasi elektrokimia katod komposit
sel bahan api oksida pepejal LSCF-SDCC. Katod komposit LSCD-SDCC
disediakan dengan nisbah berat 50:50 dan dihasilkan
melalui kaedah pengedapan elektroforetik (EPD). Kaedah EPD dijalankan
ke atas kedua belah sisi substrat SDCC untuk menghasilkan sel simetri.
Sel simetri yang terhasil adalah menggunakan suhu sinter yang berbeza
(550°C hingga 750°C)
sebelum analisis ke atas mikrostruktur dan ujian prestasi
elektrokimia dijalankan. Kesan suhu sinter ke atas keliangan permukaan
dikaji menggunakan analisis spektrometer serakan tenaga sinar-X,
mikroskop elektron imbasan pancaran medan dan J-image. Kemudian,
hubungan antara rintangan pengutuban, Rp dengan
suhu sinter diukur menggunakan spektroskop elektrokimia impedans.
LSCF-SDCC
yang telah disinter pada suhu 600°C memberikan nilai Rp terendah iaitu 0.68 Ω pada
suhu operasi 650°C. Kajian ini mencadangkan bahawa suhu sinter
antara julat 550-650°C sebagai suhu pensinteran terbaik untuk menghasilkan
katod komposit LSCF-SDCC berprestasi tinggi.
Kata kunci: Komposit; pensinteran;
sel bahan api oksida pepejal
ABSTRACT
The effects of sintering temperature
on the electrochemical performance of solid oxide fuel cell composite
cathode LSCF-SDCC are discussed in this paper.
An LSCF-SDCC composite cathode was prepared at 50:50 weights
percentage ratios. The LSCF-SDCC film was fabricated through
electrophoretic deposition (EPD) method. EPD was
conducted on both sides of the SDCC substrate to produce a symmetrical
cell. The symmetrical cell was subjected to different sintering
temperatures (550°C to 750°C) before undergoing microstructure analysis
and an electrochemical performance test. The effects of sintering
temperature change on film surface porosity were first investigated
by energy-dispersive X-ray spectroscopy, field emission scanning
electron microscopy and ImageJ analysis. Then, the relation of polarisation
resistance, Rp, with the sintering temperatures was established
through electrochemical impedance spectroscopy. LSCF-SDCC
that was sintered at 600°C exhibited the lowest Rp
value of 0.68 Ω when operated at 650°C. The results showed
that sintering temperature in the range of 550°C to 650°C is the
best sintering temperature to produce a high-performance LSCF-SDCC composite cathode.
Keywords: Composites; sintering; solid oxide fuel cell
REFERENCES
Chiba,
R., Yoshimura, F. & Sakurai, Y. 1999. An investigation of LaNi1-xFexO3 as
a cathode material for solid oxide fuel cells. Solid State Ionics
124: 281-288.
De
Riccardis, M.F., Carbone, D. & Rizzo, A. 2007. A novel method
for preparing and characterizing alcoholic EPD suspensions. Journal
of Colloid and Interface Science 307(1): 109-115.
Fan, L., Zhang, H., Chen, M., Wang, C., Wang, H., Singh, M. &
Zhu, B. 2013. Electrochemical study of lithiated transition metal
oxide composite as symmetrical electrode for low temperature ceramic
fuel cells. International Journal of Hydrogen Energy 38:
11398-11405.
Farhad,
S. & Hamdullahpur, F. 2012. Minimization of polarization resistance
in solid oxide fuel cells by proper design of micro-/ nano-structure
of porous composite electrodes. Eletrochimica Acta 61: 1-12.
Ferrari,
B. & Moreno, R. 2010. EPD kinetics: A review. Journal of
the European Ceramic Society 30: 1069-1078.
Gong,
Y., Li, X., Zhang, L., Tharp, W., Qin, C. & Huang, K. 2014.
Promoting electrocatalytic activity of a composite SOFC cathode.
Journal of the Electrochemical Society 161(3): F226-F232.
Ishihara,
T. 2009. Chapter 1. Structure and properties of perovskite oxides.
Dlm. Ishihara (pnyt.). Perovskite Oxide for Solid Oxide Fuel
Cells. Springer Science+Business Media. hlm. 4. doi:10.1007/978-0-387-77708-5.
Li,
S., Sun, X., Wen, Z. & Sun, J. 2006. A new candidate as the
cathode material for intermediate and low temperature SOFCs. Rare
Metals 25(6): 213-217.
Muhammed
Ali, S.A., Muchtar, A., Muhamad, N., Sulong, A.B. & Majlan,
E.H. 2013. Influence of sintering temperature on the power density
of Samarium doped-ceria carbonate electrolyte composites for low-temperature
solid oxide fuel cells. Ceramic International 39: 5813-5820.
Niwa,
E., Uematsu, C. & Hashimoto, T. 2013. Sintering temperature
dependence of conductivity, porosity and specific surface area of
LaNi0.6Fe0.4O3 ceramics
as cathode material for solid oxide fuel cells - Superiority of
Pechini method among various solution, mixing processes. Materials
Research Bulletin 48: 1-6.
Ortiz-Vitoriano,
N., Hauch, A., De Larramendi, I., Bernuy- Lopez, C., Knibbe, R.
& Rojo, R. 2013. Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3-δ perovskite
cathode for IT-SOFC. Journal of Power Sources 239: 196-200.
Shen,
Y., Zhao, H., Swierczek, K., Du, Z. & Xie, Z. 2013. Lattice
structure, sintering behavior and electrochemical performance of
La1.7Ca0.3Ni1-xCuxO4+δ as
cathode material for intermediate temperature solid oxide fuel cell.
Journal of Power Sources 240: 759-765.
Song,
L., Xueli, S., Zhongsheng, W. & Juncai, S. 2006. A new candidate
as the cathode material for intermediate and low temperature SOFCs.
Rare Metals 25: 213-217.
Zhao, H., Mauvy, F., Lalanne, C., Bassat, J.M., Fourcade, S. &.
Grenier, J.C. 2008. New cathode materials for ITSOFC: Phase stability,
oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics 179:
2000-2005.
*Corresponding author;
email: muchtar@ukm.edu.my
|