Sains Malaysiana 45(6)(2016): 909–914

 

Effect of Temperature on Lateral Gene Transfer Efficiency of Multi-Antibiotics Resistant Bacterium, Alcaligenes faecalis

(Kesan Suhu ke atas Kecekapan Pemindahan Gen Lateral Multi-Antibiotik Rintangan Bakteria, Alcaligenes faecalis)

 

 

GOUTAM BANERJEE1*, ARUN KUMAR RAY1 & RAVI KUMAR2

 

1Department of Zoology, Visva-Bharati University, Santinilketan, 731235 West Bengal, India

 

2Helix Biogenesis, Noida, Sector-2, Pin-201301, Uttar Pradesh, India

 

Received: 4 November 2015/Accepted: 28 Disember 2015

 

 

ABSTRACT

Antibiotic resistant bacterial population is a great threat for human as well as for other domestic animals. Unscientific use of antibiotics in clinical sectors create a selective pressure on bacteria that make bacteria resistant to a wide range of drugs. The current finding demonstrated the isolation and characterization of multi antibiotics resistant bacterial species from oil contaminated soil and its lateral gene transfer efficiency at different temperature. Among six bacterial isolates, the strain OD1 showed highest antibiotic resistant capacity was selected for further studies. Morphological, biochemical and 16S rDNA sequence analysis confirmed the bacterial strains as Alcaligenes faecalis strain OD1. It was recorded that antibiotics resistant gene transfer was highly dependent on temperature and showed maximum transfer efficiency at 25°C (9.6 ×10-6).

 

Keywords: Antibiotics resistant bacterium; lateral gene transfer efficiency; temperature; 16S rDNA

 

ABSTRAK

Populasi antibiotik tahan bakteria adalah ancaman besar bagi manusia dan haiwan domestik lain. Penggunaan antibiotik tidak saintifik dalam sektor klinikal mewujudkan tekanan terpilih pada bakteria yang membuat bakteria tahan kepada pelbagai ubat-ubatan. Penemuan terkini menunjukkan pengasingan dan pencirian pelbagai spesies antibiotik tahan bakteria daripada minyak tanah tercemar dan kecekapan pemindahan gen lateral pada suhu yang berbeza. Antara enam pengasingan bakteria, terikan OD1 menunjukkan kapasiti antibiotik tahan yang tertinggi telah dipilih untuk melanjutkan pelajaran. Analisis morfologi, biokimia dan jujukan 16S rDNA mengesahkan terikan bakteria sebagai ketegangan Alcaligenes faecalis OD1. Ia telah dicatatkan bahawa pemindahan gen antibiotik tahan terlalu bergantung kepada suhu dan menunjukkan kecekapan pemindahan maksimum pada 25°C (9.6 × 10-6).

 

Kata kunci: Antibiotik rintangan bakteria; kecekapan pemindahan gen lateral; suhu; 16S rDNA

REFERENCES

Aminov, R. 2010. A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology 1: 134-141.

Aravena-Román, M., Inglis, T.J.J., Henderson, B., Riley, T.V. & Changa, B.J. 2012. Antimicrobial susceptibilities of Aeromonas strains isolated from clinical and environmental Sources to 26 antimicrobial agents. Antimicrobial Agents and Chemotherapy 56: 1110-1112.

Camacho, E.E. & Casadesús, J. 2002. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine responsive regulatory protein and DNA adenine methylation. Molecular Microbiology 44: 1589-1598.

Chapin, A., Rule, A., Gibson, K., Buckley, T. & Schwab, K. 2004. Airborne multi-drug resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspective 113: 137-142.

De, A. & Deodhar, L. 1995. Antibiotic resistant pattern and R-plasmids of Acinetobacter calcoaceticus subsp. anitratus. Indian Journal of Pathology and Microbiology 138: 185-188.

Gambarotto, K., Ploy, M.C., Dupron, F., Giangiobbe, M. & Denis, F. 2001. Occurrence of vancomycin resistant enterococci in pork and poultry products from a cattle-rearing area of France. Journal of Clinical Microbiology 39: 2354-2355.

Gevers, D., Huys, G. & Swings, J. 2003. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiology Letter 225: 125-130.

Giedraitienė, A., Vitkauskienė, A., Naginienė, R. & Pavilonis, A. 2011. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas) 47(3): 137-146.

Hancock, R.E. 1997. The bacterial outer membrane as a drug barrier. Trends in Microbiology 5: 37-42.

Jain, R., Rivera, M.C., Moore, J.E. & Lake, J.A. 2003. Horizontal gene transfer accelerates genome innovation and evolution. Molecular Biology and Evolution 20: 1598-1602.

Lee, E., Mavrikakis, I., Paul, B. & Liu, C. 2006. Postoperative endophthalmitis due to an unusual pathogen: Alcaligenes faecalis. Eye 20: 967-968.

Lorenz, M.G. & Wackernagel, W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Review 58: 563-602.

Lorenz, M.G. & Wackernagel, W. 1992. Stimulation of natural genetic transformation of Pseudomonas stutzeni in extracts of various soils by nitrogen or phosphorus limitation and influence of temperature and pH. Microbial Releases 1: 173-176.

Page, W.J. & Grant, G.A. 1987. Effect of mineral iron on the development of transformation competence in Azotobacter vinelandii. FEMS Microbiology Letter 41: 257-261.

Page, W.J. & Sadoff, H.L. 1976. Physiological factors affecting transformation of Azotobacter vinelandii. Journal of Bacteriology 125: 1080-1087.

Palmen, R., Vosman, B., Buijsman, P., Breek, C.K.D. & Hellingwerf, K.J. 1993. Physiological characterization of natural transformation in Acinetobacter calcoaceticus. Journal of General Microbiology 139: 295-305.

Pandey, A., Afsheen, Ara, F. & Tiwari, S.K. 2011. Isolation and characterization of multi drug resistance cultures from waste water. Journal of Pharmaceutical and Biomedical Science 13: 1-7.

Saif, Y.M., Moorhead, P.D., Dearth, R.N. & Jackwood, D.J. 1980. Observation on Alcaligenes faecalis infection in Turkeys. Avian Disease 2: 665-684.

Saiman, L., Chen, Y., Tabibi, S., Gabriel, P.S., Zhou, J., Liu, Z., Lai, L. & Whittier, S. 2001. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Journal of Clinical Microbiology 39: 4942-3945.

Singleton, P. & Anson, A.E. 1981. Conjugal transfer of R-plasmid Rldrd-19 in Escherichia coli below 22°C. Applied and Environmental Microbiology 42: 789-791.

Snell, L. 2008. Isolation and identification of antibiotic resistant bacteria from the intestinal flora of feedlot cattle and a measure of their efficacy for lateral gene transfer. Cantaurus 16: 18-20.

Son, R., Rusul, G., Sahilah, A.M., Zainuri, A., Raha, A.R. & Salmah, I. 1997. Antibiotics resistant and plasmid profile of Aeromonas hydrophila isolated from cultured fish, Telapia (Telapia mossambica). Letters in Applied Microbiology 24: 479-482.

Sorensen, T.L., Blom, M., Monnet, D.L., Frimodt-Moller, N., Poulsen, R.L. &Espersen, F. 2001. Transient intestinal carriage after ingestion of antibiotic-resistant Enterococcus faecium from chicken and pork. The New England Journal of Medicine 345: 1161-1166.

Vila, J., Marcoa, F., Solerb, L., Chaconb, M.M. & Figuerasb, M.J. 2002. In vitro antimicrobial susceptibility of clinical isolates of Aeromonas caviae, Aeromonas hydrophila and Aeromonas veronii biotype sobria. Journal of Antimicrobial Chemotherapy 49: 701-702.

White, D.G., Zhao, S., Sudler, R., Ayers, S., Friedman, S., Chen, S., Mcdermott, P.F., Mcdermott, S., Wagner, D.D. & Meng, J. 2001. The isolation of antibiotic-resistant Salmonella from retail ground meats. The New England Journal of Medicine 345: 1147-1154.

World Health Organization (WHO). 2000. Overcoming antimicrobial resistance. Geneva: (infectious-disease-report/2000/).

 

 

*Corresponding author, email: banerjee.goutam2@gmail.com

 

 

previous