Sains Malaysiana 47(7)(2018): 1511–1516
http://dx.doi.org/10.17576/jsm-2018-4707-19
Kesan Resonans
Plasmon Aurum terhadap Prestasi
Fotoelektrokimia Fotokatod
Cu2O
(Plasmonic Resonance
Effect of Au on Photoelectrochemical Performance
of Cu2O Photocathode)
KIM HANG
NG1,
LORNA
JEFFERY
MINGGU1*,
NURUL
AKMAL
JAAFAR1
& MOHAMMAD B. KASSIM2
1Institut Sel
Fuel, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Pengajian
Sains Kimia dan
Teknologi Makanan, Fakulti Sains dan
Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 30 June 2017/Accepted:
19 February 2018
ABSTRAK
Dalam kajian ini,
kesan lapisan Au di atas fotokatod kuprus oksida (Cu2O)
terhadap tindak
balas fotoelektrokimia telah diuji. Lapisan Cu2O
dan Au ini telah disediakan di atas subtrak kaca
stanum oksida
terdop fluorin (FTO)
dalam konfigurasi yang berlainan, melalui kaedah elektroendapan. Selepas itu, fotokatod
ini dicirikan
dengan mikroskopi elektron imbasan berpancaran medan
(FESEM),
spektroskopi ultra lembayung
dan cahaya nampak (UV-Vis) dan
analisis fotoelektrokimia.
Daripada imej FESEM, lapisan
Au telah berjaya
diendapkan di atas substrak FTO dan
permukaan Cu2O.
Penyerapan plasmon
Au pada julat cahaya
nampak juga terbukti
dan ia
telah mempertingkatkan penggunaan cahaya nampak untuk tindak
balas fotoelektrokimia.
Oleh itu, prestasi fotoelektrokimia
fotokatod Cu2O
berplasmon telah
meningkat secara ketara. Di bawah sinaran suria simulasi
A.M 1.5, fotokatod Cu2O
terapit Au telah
menjanakan ketumpatan fotoarus yang tertinggi, iaitu ~4 kali ganda peningkatan berbanding prestasi fotokatod Cu2O
tulen.
Kata kunci:
Fotoelektrokimia; logam
oksida; plasmon
ABSTRACT
In this work, the effect of
Au layer on cuprous oxide (Cu2O) photocathode on photoelectrochemical reaction was studied. The Cu2O
and Au layer were prepared on a fluorine-doped tin oxide (FTO)
glass substrate in different configurations, via electrodeposition
method. Then, the photocathodes were characterized by field-emission
scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoelectrochemical analysis. From the FESEM images,
the Au layer was successfully deposited onto the FTO substrate
and the surface of Cu2O. The plasmonic
absorption of Au at visible light region was proven and it improved
the utilization of visible light for photoelectrochemical
reaction. As a result, the photoelectrochemical
performance of the plasmonized Cu2O
photocathode improved significantly. Under simulated AM 1.5
solar illumination, the Au sandwiched Cu2O
photocathode generated the highest photocurrent density, which is
~4 folds enhancement compared to that obtained by bare Cu2O
photocathode.
Keywords: Metal oxide; photoelectrochemical;
plasmonic
REFERENCES
Baxter, J.B., Richter, C. & Schmuttenmaer,
C.A. 2014. Ultrafast carrier dynamics in nanostructures for
solar fuels. Annu. Rev. Phys. Chem 65(1):
423-447.
Choudhary, S., Upadhyay,
S., Kumar, P., Singh, N., Satsangi, V.R.,
Shrivastav, R. & Dass, S. 2012.
Nanostructured bilayered thin films in
photoelectrochemical water splitting - A review. International
Journal of Hydrogen Energy 37(24): 18713- 18730.
Duchene, J.S., Williams, B.P., Johnston-Peck, A.C., Qiu, J., Gomes, M., Amilhau, M.,
Bejleri, D., Weng, J., Su, D., Huo, F., Stach, E.A. & Wei,
W.D. 2016. Elucidating the sole contribution from electromagnetic
near-fields in plasmon-enhanced Cu2O
photocathodes. Advanced Energy Materials
6(1): 1-10.
Gao, H., Zhang, P., Hu, J., Pan, J., Fan, J. & Shao, G. 2017. One-dimensional Z-scheme TiO2/WO3/Pt
heterostructures for enhanced hydrogen
generation. Applied Surface Science 391(Part B): 211-217.
Grätzel, M. 2017. The rise of
highly efficient and stable perovskite solar cells. Accounts
of Chemical Research 50(3): 487-491.
Hong,
J.W., Wi, D.H., Lee, S.U. & Han, S.W.
2016. Metal-semiconductor heteronanocrystals with
desired configurations for plasmonic photocatalysis. Journal of the American Chemical
Society 138(48): 15766-15773.
Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez,
M. & Xia, Y. 2006. Gold nanostructures: Engineering
their plasmonic properties for biomedical
applications. Chemical Society Reviews 35(11): 1084-1094.
Hutchins,
M.G., Abu-Alkhair, O., El-Nahass, M.M. & Abd El- Hady, K. 2006. Structural and optical characterisation of thermally evaporated tungsten trioxide
(WO3) thin films. Materials Chemistry and Physics
98(2-3): 401-405.
Jaafar,
N.S.H., Minggu, L.J., Arifin,
K. & Kassim, M.B. 2017. Natural dyes as
TiO2 sensitizers with membranes for
photoelectrochemical water splitting:
An overview. Renewable and Sustainable Energy Reviews 78:
698-709.
Kalamaras, E., Dracopoulos,
V., Sygellou, L. & Lianos,
P. 2016. Electrodeposited Ti-doped
hematite photoanodes and their employment
for photoelectrocatalytic hydrogen production in the presence
of ethanol. Chemical Engineering Journal 295: 288-294.
Kawawaki, T., Takahashi,
Y. & Tatsuma, T. 2013. Enhancement of dye-sensitized photocurrents
by gold nanoparticles: Effects of plasmon
coupling. J. Phys. Chem. C. 117(11): 5901-5907.
Lee, Y.G., Wang,
J.R., Chuang, M.J., Chen, D.W. & Hou,
K.H. 2017.
The effect of electrolyte temperature on the electrodeposition of
cuprous oxide films. International Journal of Electrochemical
Science 12: 507-516.
Leong, K.H., Liu,
S.L., Sim, L.C., Saravanan, P., Jang,
M. & Ibrahim, S. 2015.
Surface reconstruction of titania
with g-C3N4 and Ag for promoting efficient
electrons migration and enhanced visible light photocatalysis.
Applied Surface Science 358(Part A): 370-376.
Lewis, N. 2016. Research opportunities
to advance solar energy utilization. Science 351(6271):
aad1920.
Li, J., Cushing,
S.K., Bright, J., Meng, F., Senty, T.R., Zheng, P., Bristow, A.D. & Wu, N. 2013. Ag@Cu2O
core-shell nanoparticles as visible-light plasmonic
photocatalysts. ACS Catalysis 3(1): 47-51.
Liu, L., Ding, L., Liu, Y., An, W., Lin, S., Liang, Y. & Cui, W. 2016. Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like
Bi2WO6 structures. Applied Surface Science
364: 505-515.
Mark-Lee, W.F.,
Ng, K.H., Minggu, L.J., Umar, A.A. &
Kassim, M.B. 2012. Determination of band energy levels for tungsten nitrosyldithiolene. Sains
Malaysiana 41(4): 439-444.
Mi, Y., Wen, L.,
Xu, R., Wang, Z., Cao, D., Fang, Y. & Lei, Y. 2016. Constructing a
AZO/TiO2 core/shell nanocone
array with uniformly dispersed Au NPs for enhancing photoelectrochemical
water splitting. Advanced Energy Materials
6(1): 1-8.
Ng, K.H., Minggu, L.J., Jaafar, N.A. &
Kassim, M.B. 2017. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3
photoanodes. Solar Energy Materials
& Solar Cells 172: 361-367.
Ng, K.H., Minggu, L.J., Jumali, M.H.H. &
Kassim, M.B. 2012. Fotoelektrod tungsten trioksida terdop nikel untuk tindak
balas pembelahan
air fotoelektrokimia. Sains
Malaysiana 41(7): 893-899.
Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin,
K., Jumali, M.H.H. & Kassim,
M.B. 2018.
A new method for the fabrication of a bilayer WO3/Fe2O3
photoelectrode for enhanced photoelectrochemical
performance. Materials Research Bulletin 98: 47-52.
Pazos-Outón, L.M., Lee, J.M.,
Futscher, M.H., Kirch,
A., Tabachnyk, M., Friend, R.H. &
Ehrler, B. 2017. A silicon-singlet fission tandem
solar cell exceeding 100% external quantum efficiency with high
spectral stability. ACS Energy Letters 2(2): 476-480.
Pu, Y. & Zhang,
J.Z. 2014.
Mechanisms behind plasmonic
enhancement of photocurrent in metal oxides. Austin Journal
of Nanomedicine and Nanotechnology 2(5): 1-4.
Redecka, M., Rekas, M., Trenczek-Zajac, A. &
Zakrzewska, K. 2008. Importance of
the band gap energy and flat band potential for application of modified
TiO2 photoanodes in water photolysis.
Journal of Power Sources 181(1): 46-55.
Sim, L.C., Leong, K.H., Ibrahim,
S. & Saravanan, P. 2014. Graphene
oxide and Ag engulfed TiO2 nanotube arrays for enhanced
electron mobility and visible-light-driven photocatalytic performance.
Journal of Materials Chemistry A 2(15):
5315-5322.
Tang, Q. 2017. All-weather
solar cells - A rising photovoltaic revolutionary. Chemistry
- A European Journal 23(34): 8118-8127.
Verma, A., Srivastav,
A., Banerjee, A., Sharma, D., Sharma, S., Singh, U.B., Satsangi,
V.R., Shrivastav, R., Avasthi,
D.K. & Dass, S. 2013. Plasmonic
layer enhanced photoelectrochemical response
of Fe2O3 photoanodes.
Journal of Power Sources 315: 152-160.
Wang, B., Li, R., Zhang, Z., Zhang,
W., Yan, X., Wu, X., Cheng, G. & Zheng, R. 2017. Novel Au/Cu2O
multi-shelled porous heterostructures
for enhanced efficiency of photoelectrochemical
water splitting. Journal of Materials Chemistry A
5(27): 14415-14421.
Wang, T., Jin, B., Jiao, Z., Lu, G., Ye, J. & Bi, Y. 2014. Photo-directed growth of Au nanowires
on ZnO arrays for enhancing photoelectrochemical performances. Journal of Materials
Chemistry A 2(37): 15553-15559.
Yang, J., Li,
Z., Zhao, C., Wang, Y. & Liu, X. 2014. Facile synthesis of Ag-Cu2O
composites with enhanced photocatalytic activity. Materials
Research Bulletin 60: 530-536.
Ye, W., Long,
R., Huang, H. & Xiong, Y. 2016. Plasmonic nanostructures in solar
energy conversion. J. Mater. Chem. C 5: 1008-1021.
Yuan, G.Z., Hsia,
C.F., Lin, Z.W., Chiang, C., Chiang, Y.W. & Huang, M.H. 2016. Highly facet-dependent photocatalytic
properties of Cu2O crystals established through the formation
of Au-decorated Cu2O heterostructures.
Chemistry - A European Journal 22(35): 12548-12556.
Zhang, L., Herrmann,
L.O. & Baumberg, J.J. 2015. Size dependent
plasmonic effect on BiVO4 photoanodes for solar water splitting. Scientific
Reports 5: 16660.
*Corresponding author:
email: lorna_jm@ukm.edu.my
|