Sains Malaysiana 49(10)(2020):
2443-2451
http://dx.doi.org/10.17576/jsm-2020-4910-10
Kesan Gelembung Udara dan Auksin bagi Penginduksian Akar pada Tunas Arundina graminifoliadalam Sistem Rendaman Berterusan Tertutup
(Effects
of Air Bubbles and Auxin on Root Induction of Arundina graminifoliaShoots in Close Permanent
Immerse System)
SAKINAH
IDRIS1*, CHE RADZIAH CHE MOHD. ZAIN1 & AB. KAHAR
SANDRANG2
1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan Hortikultur, Ibu Pejabat MARDI, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
Received:
25 September 2019/Accepted: 9 May 2020
ABSTRAK
Arundina graminifolia atau orkid buluh adalah orkid yang
hidup di atas tanah, tahan panas dan penyakit, mudah dijaga, berbunga sepanjang
tahun dan sangat sesuai untuk dijadikan tanaman landskap di kawasan terbuka.
Kebiasaannya, A. graminifolia dibiak melalui
pembahagian rumpun dan kultur tisu. Kadar pembiakan daripada kaedah ini adalah
sangat rendah dan mengambil masa yang lama untuk memperbanyakkan bahan tanaman.
Penggunaan sistem rendaman berterusan tertutup (CPIS) telah berjaya
mempercepatkan penginduksian mata tunas A.
graminifolia. Namun, penginduksian akar mengambil
masa yang agak lama iaitu melebihi tiga bulan. Oleh yang demikian, kajian ini
bertujuan untuk menambahbaik sistem CPIS dengan menambah gelembung udara bagi
mempercepatkan penginduksian akar pada tunas A.
graminifolia. Seterusnya, penggunaan auksin asid
naftalenasetik (NAA) dan asid indol-3-butirik (IBA) bagi meningkatkan peratus
pengakaran pada tunas A. graminifolia turut dijalankan. Kehadiran gelembung udara di dalam
sistem CPIS menunjukkan terdapat peningkatan yang signifikan untuk kelebaran,
ketinggian dan kerenggangan mata tunas berbanding dengan CPIS tanpa kehadiran
gelembung udara. Tunas yang terhasil dalam sistem CPIS dengan kehadiran
gelembung udara juga mampu menghasilkan akar (10% tunas yang berakar)
berbanding dengan sistem CPIS tanpa kehadiran gelembung udara yang langsung
tidak menghasilkan akar. Penginduksian akar pada tunas A.
graminifolia menggunakan IBA dan NAA dengan
kepekatan 0, 0.5, 1.0 dan 1.5 ppm menunjukkan perbezaan yang signifikan
berbanding kawalan. Penggunaan hormon NAA dengan kepekatan yang semakin
meningkat telah meningkatkan purata panjang akar, namun memberi kesan
sebaliknya diperhatikan pada rawatan IBA. Kesimpulannya, sistem CPIS dengan
kehadiran gelembung udara berserta hormon NAA 1.5 ppm mampu menginduksi dan
meningkatkan peratus pengakaran A. graminifolia dengan lebih cepat.
Kata kunci: Arundina
graminifolia; gelembung udara; hormon; penginduksian
akar; sistem rendaman berterusan tertutup (CPIS)
ABSTRACT
Arundina graminifolia or bamboo orchid is a terrestrial orchid, heat, and disease
resistant, easy to maintain, flowers throughout the year and suitable for
outdoor landscapes. Commonly, A. graminifolia is
propagated through the dividing of root mass and tissue culture. The rate of propagation via these techniques
is very slow and take a long period to produce more planting materials. The use
of closed permanent immerse systems (CPIS) has been successful in accelerating
the shoot induction of A. graminifolia. However, its root induction takes a
while, which is more than three months. Therefore, this study was aimed to
improve the CPIS system by adding the presence of air bubbles to accelerate the
root induction of A. graminifolia shoots. Furthermore, the use of auxins which are
1-naphthaleneacetic acid (NAA) and Indole-3-butyric acid (IBA) to increase the
percentage of root induction on A. graminifolia shoot was
also performed. The presence of air bubbles in the CPIS system showed a
significant increase in shoot width, height and gap compared to the CPIS system
without air bubbles. Shoots that were produced using the CPIS system with air
bubbles are also able to produce root (10% of rooting shoots) compared to the
CPIS system without air bubbles that did not generate root at all. Root
induction on A. graminifolia shoots using IBA and NAA at 0, 0.5, 1.0 and 1.5 ppm
concentrations showed significant differences compared to control. Increasing
of the NAA hormone concentrations increased the mean of root length, but
opposite results were observed with IBA treatment. In conclusion, the CPIS
system with air bubbles and 1.5 ppm NAA was able to induce and increase the
percentage of rooting of A. graminifolia shoots in a short period.
Keywords:
Air bubbles; Arundina graminifolia; closed
permanent immerse system (CPIS); hormone; root induction
REFERENCES
Bhadra, S.K. & Bhowmik, T.K. 2005.
Axenic germina germination of seeds and rhizome-based micropropagation of an orchid Arundina graminifolia (D. Don.) Hochr. Bangladesh
Journal of Botany 34(2): 59-64.
Chen, Z., Zeng, S. & Wen, T. 2006. Asepsis sowing and in
vitro propagation of Arundina graminifolia Hochr. Plant
Physiology Communications 42(1): 66.
Clarke, A., Desikan, R., Hurst,
R.D., Hancock, J.T. & Neill, S.J. 2000. NO way back: Nitric oxide and
programmed cell death in Arabidopsis
thaliana suspension cultures. Plant
Journal 24(5): 667-677.
Das, S., Choudhury, M.D. & Mazumder,
P.B. 2013. In vitro propagation of Arundina graminifolia (D.Don) Hochr - a bamboo orchid. Asian Journal of Pharmaceutical and Clinical
Research 6(5): 156-158.
Deb, C.R. 2013. Orchids of Nagaland,
propagation, conservation and sustainable utilization: A review. Pleione 7(1): 52-58.
Engah. W.R.W. 2018. http://www.utusan.com.my/sains teknologi sains/orkid tahan panas © Utusan Melayu (M) Bhd.
Febriani, T.P.,
Damranti, S. & Raharjo, B. 2009. Pengaruh konsentrasi dan lama perendaman dalam supernatan
kultur Bacillus sp.2 DUCC-BR-KI.3
terhadap pertumbuhan stek horisontal batang jarak pagar (Jatropa curcas L.). Jabatan
Sains & Matematika 17(3): 131-140.
Fujita, H.
& Syono, K. 1996. Genetic analysis of the effects of
polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant
and Cell Physiology 37(8): 1094-1101.
Hartmann, H.T. & Kester, D.E.
1975. Plant Propagation: Principles and
Practices. 4th ed. New Jersey. Prentice Hall. m.s. 727.
Hopkins, W.G. & Hüner, N.P.A.
2004. Introduction to Plant Phsiology. London, Ontario: John Wiley & Sons, Inc. m.s. 17-27.
Idris, S., Zain, C.R.C.M., Sandrang, A.K. & Engah,
W.R.W. 2019a. A preliminary study on propagation system to induce shoot-bud
proliferation of Arundina graminifolia. Dlm. 28th Malaysian
Society of Plant Physiology Conference (MSPPC 2018), Challenges and Strategies
for Plant Productivity and Resilience, Kelantan, Malaysia. m.s. 71-74.
Idris, S., Sandrang, A.K. &
Zain, C.R.C.M. 2019b. Vegetative
propagation of Arundina graminifolia:
Influences of node numbers, physiological age and position of cutting for best
shoot-bud proliferation. International Journal of Agriculture, Forestry
and Plantation 8: 36-39.
Idris, S., Zain, C.R.C.M., Sandrang,
A.K., Engah, W.R.W. & Nurul Enanee, A.K. 2017. Proliferasi tunas hibrid baharu Arundina graminifolia sp. tempatan × Arundina graminifolia sp. India menggunakan sistem rendaman sementara. Dlm. Prosiding Persidangan Kebangsaan Pemindahan Teknologi (CONFERTECH). m.s. 282-285.
Izzati, I.R., Ketty, S. & Winarso, D.W. 2006. Penggunaan pupuk majemuk sebagai sumber hara pada budidaya selada (Lactuca sativa L.) secara hidroponik dengan tiga cara fertigasi. Dlm. Prosiding Seminar Nasional PERHORTI. m.s. 153-164.
Klerk, G.J.D., Keppel, M., Brugge, J.T.
& Meekes, H. 1995. Timing of the phases in adventitious
root formation in apple microcuttings. Journal of Experimental Botany 46(8):
965-972.
Kumar, D. & Klessig, D.F. 2000.
Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid. Molecular Plant-Microbe
Interactions 13(3): 347-351.
Liu, M.F., Ding, Y. & Zhang, D.M. 2005. Phenanthrene constituents from rhizome of Arundina graminifolia. China Journal of Chinese Materia Medica30(5): 353-356.
Martin, K.P. 2007. Micropropagation of the bamboo orchid (Arundina graminifolia (D. Don) Hochr.) through protocorm-like-bodies
using node explants. Propagation of
Ornamental Plants 7(2): 97-100.
Nagaraju, V. & Parthasarathy, V.S.
1995. In vitro propagation of plaius and
bamboo orchid by shoot tip culture. Annals
of Plant Physiology 9: 102-104.
O’Byrne, P. 2001. A to Z of South East Asia Orchid Species.
Singapore: Orchid Society of South East Asia.
Pagnussat,
G.C., Lanteri, M.L., Lombardo, M.C. & Lamattina, L. 2004. Nitric oxide mediates the indole acetic acid induction
activation of a mitogen-activated protein kinase cascade involved in adventutios root development. Plant Physiology 135(1): 279-286.
Pagnussat,
G.C., Lanteri, M.L. & Lamattina, L. 2003. Nitric
oxide and cyclic GMP are messengers in the indole acetic acid-induced
adventitious rooting process. Plant
Physiology 132(3): 1241-1248.
Pagnussat,
G.C., Simontacchi, M., Puntarulo, S. & Lamattina, L. 2002. Nitric oxide is
required for root organogenesis. Plant
Physiology 129(3): 954-956.
Rozlaily, Z. & Engah, W.R.W. 2012. Orkid eksotik untuk landskap. Dlm. Prosiding Persidangan Kebangsan Pemindahan Teknologi (CONFERTECH). m.s. 82-85.
Sandrang, K.A., Sayuti, Z. & Ahmad,
H. 2009. Sistem pembiakan kapilari tertutup untuk keratan batang. Buletin Teknologi Tanaman 6: 9-13.
Sari, E.
& Bintoro, A. 2016. Betung Bamboo (Dendrocalamus asper) branch cutting response to indole butyric acid (IBA). Journal Sylva Lestari 4(2): 61-68.
Wijayanto, N. & Nurunnajah, N. 2012. Intensitas cahaya, suhu, kelembaban dan perakaran lateral mahoni (Swietenia macrophylla King.) di RPH Babakan Madang, BKPH Bogor, KPH Bogor. Jurnal Silvikultur Tropika 3(1):
8-13.
*Corresponding
author; email: isakinah@mardi.gov.my
|