Sains Malaysiana
49(10)(2020):
2477-2486
http://dx.doi.org/10.17576/jsm-2020-4910-13
Evaluation
and Optimization of a New Approach on Phenol Extraction from Real Water
(Penilaian
dan Pengoptimuman Pendekatan yang Baharu untuk Memisahkan Fenol daripada Air
Semula Jadi)
NIK NUR ATIQAH NIK WEE1,
NUR IRSALINA MOHD JUBER1, MOHD NOR FAIZ NORRRAHIM2 &
NOORASHIKIN MD. SALEH1*
1Department of Chemical and Process Engineering, CESPRO, Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
2Research Center for Chemical Defence, Universiti Pertahanan Nasional
Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia
Received: 16 January
2020/Accepted: 29 April 2020
Abstract
Phenolic compounds are
hazardous industrial wastes that can contaminate real water resources.
Therefore, the removal of these compounds in order to reach acceptable levels
before discharging becomes challenging. In this study, a combination method
between dispersive liquid-liquid microextraction (DLLME) with high-performance
liquid chromatography-UV detection at 280 nm with the isocratic condition was
introduced as a new approach for separating phenol content in water samples.
The optimized parameters that affect the extraction efficiency, such as type of
solvents, the volume of extraction and dispersive, stirring speed of centrifuge
and salt concentration were evaluated using response surface methodology (RSM).
A central composite design (CCD) was used to investigate the effect of four
independent variables parameters, as mentioned. The recovery value on the DLLME
method for the water sample is in the range of 92.31 - 114.29%. Based on the
recovery obtained, the DLMME-HPLC-UV is a promising method for phenol extraction
because it is simple, effective and produce a high percentage of the recovery.
Keywords: Dispersive
liquid-liquid microextraction; high-performance liquid-chromatography-UV;
phenol; response surface methodology; water sample
Abstrak
Sebatian fenol adalah sisa
industri berbahaya yang boleh mencemari sumber air semula jadi. Oleh itu,
penyingkiran sebatian ini daripada air untuk mencapai tahap yang selamat
sebelum dilepaskan menjadi suatu perkara yang mencabar. Dalam kajian ini,
gabungan kaedah mikroektraksi cecair-cecair serak (DLLME) dengan kromatografi
cecair prestasi tinggi-pengesanan UV pada 280 nm dalam keadaan isokumen
diperkenalkan sebagai pendekatan yang baru untuk memisahkan fenol yang terdapat
di dalam sampel air. Untuk mengoptimunkan parameter yang mempengaruhi kadar
kecekapan pengekstrakan, seperti jenis pelarut, jumlah pengekstrakan dan
serakan, kelajuan pengadukan emparan dan juga kepekatan garam dinilai
menggunakan kaedah permukaan tindak balas (RSM). Reka bentuk komposit pusat (CCD)
digunakan untuk mengkaji kesan empat parameter pemboleh ubah bebas seperti yang
dinyatakan. Nilai pemulihan kaedah DLLME untuk sampel air adalah dalam
lingkungan 92.31% - 114.29%. Berdasarkan nilai pemulihan yang diperoleh,
DLLME-HPLC-UV adalah kaedah yang menjanjikan untuk pengestrakan fenol kerana ia
adalah mudah, berkesan dan dapat menghasilkan peratusan pemulihan yang tinggi.
Kata kunci: Fenol; kaedah permukaan tindak balas; kromatografi
cecair prestasi tinggi-pengesanan UV;
mikroektraksi cecair-cecair serakan; sampel air
REFERENCES
Abdelkreem, M. 2013. Adsorption of phenol
from industrial wastewater using olive mill waste. APCBEE Procedia 5(1):
349-357.
Alhaji, M.H., Abdullahi, M.S., Oparah,
E.N., Bitrus, H. & Rigit, A.R.H. 2020. Productiton of annins from Acacia
nilotica pods for the leather manufacturing industry-extractions,
characterization, and optimization using design of experiment. Bioresources 15(2): 2212-2226.
Azahar, N.F., Abd Gani, S.S. &
Mokhtar, N.F.M. 2017. Optimization of phenolics and flavonoids extraction
conditions of Curcuma zedoaria leaves using response surface methodology.
Chemistry Central Journal 11(1): 1-10.
Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad,
A.B., Takriff, M.S. & Sopian, K. 2012. Synthesis and catalytic activity of
TiO2 nanoparticles for photochemical oxidation of concentrated
chlorophenols under direct solar radiation. International Journal of
Electrochemical Science 7(6): 4871-4888.
Bezerra, M.A., Santelli, R.E., Oliveira,
E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology
(RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):
965-977.
Cabrera, K., Lubda, D., Eggenweiler, H.M.,
Minakuchi, H. & Nakanishi, K. 2000. A new monolithic‐type HPLC column
for fast separations. Journal of High Resolution Chromatography 23(1):
93-99.
Cai, Y., Cai, Y.E., Shi, Y., Liu, J., Mou,
S. & Lu, Y. 2007. A liquid-liquid extraction technique for phthalate esters
with water-soluble organic solvents by adding inorganic salts. Microchimica
Acta 157(1-2): 73-79.
Gupta, V.K., Ali, I., Saleh, T.A., Nayak,
A. & Agarwal, S. 2012. Chemical treatment technologies for waste-water
recycling - An overview. RSC Advances 2(16): 6380-6388.
Jain, R., Mudiam, M.K.R., Chauhan, A., Ch,
R., Murthy, R.C. & Khan, H.A. 2013. Simultaneous derivatisation and
preconcentration of parabens in food and other matrices by isobutyl
chloroformate and dispersive liquid-liquid microextraction followed by gas
chromatographic analysis. Food Chemistry 141(1): 436-443.
Jiang, H., Fang, Y., Fu, Y. & Guo,
Q.X. 2003. Studies on the extraction of phenol in wastewater. Journal of
Hazardous Materials 101(2): 179-190.
Khalid, M., Joly, G., Renaud, A. &
Magnoux, P. 2004. Removal of phenol from water by adsorption using zeolites. Industrial
& Engineering Chemistry Research 43(17): 5275-5280.
Liu, S., Xie, Q., Chen, J., Sun, J., He,
H. & Zhang, X. 2013. Development and comparison of two dispersive liquid-liquid
microextraction techniques coupled to high performance liquid chromatography
for the rapid analysis of bisphenol A in edible oils. Journal of
Chromatography A 1295: 16-23.
Liyana-Pathirana, C. & Shahidi, F.
2005. Optimization of extraction of phenolic compounds from wheat using
response surface methodology. Food Chemistry 93(1): 47-56.
Lua, A.C. 2019. A detailed study of
pyrolysis conditions on the production of steam-activated carbon derived from
oil-palm shell and its application in phenol adsorption. Biomass Conversion
and Biorefinery 10: 523-533.
Maham, M., Kiarostami, V., Waqif-Husain,
S. & Sharifabadi, M.K. 2014. Analysis of chlorpheniramine in human urine
samples using dispersive liquid-liquid microextraction combined with
high-performance liquid chromatography. Brazilian Journal of Pharmaceutical
Sciences 50(3): 551-557.
Mahdavi, S., Molodi, P. & Zarabi, M.
2018. Functionalized MgO, CeO2 and ZnO nanoparticles with humic acid
for the study of nitrate adsorption efficiency from water. Research on Chemical
Intermediates 44(9): 5043-5062.
Masqué, N., Marcé, R.M. & Borrull, F.
1998. New polymeric and other types of sorbents for solid-phase extraction of
polar organic micropollutants from environmental water. Trac Trends in
Analytical Chemistry 17(6): 384-394.
Mittal, A., Kaur, D., Malviya, A., Mittal,
J. & Gupta, V.K. 2009. Adsorption studies on the removal of coloring agent
phenol red from wastewater using waste materials as adsorbents. Journal of
Colloid and Interface Science 337(2): 345-354.
Pawliszyn, J. 2003. Sample preparation:
quo vadis? Analytical Chemistry 75(11): 2543-2558.
Pourbasheer, E., Qasemi, F., Rouhi, M.,
Azari, Z. & Ganjali, M.R. 2017. Preconcentration and determination of
2‐mercaptobenzimidazole by dispersive liquid-liquid microextraction and
experimental design. Journal of Separation Science 40(11): 2467-2473.
Rezaee, M., Yamini, Y., Shariati, S.,
Esrafili, A. & Shamsipur, M. 2009. Dispersive liquid-liquid microextraction
combined with high-performance liquid chromatography-UV detection as a very
simple, rapid and sensitive method for the determination of bisphenol A in
water samples. Journal of Chromatography A 1216(9): 1511-1514.
Rezaee, M., Assadi, Y., Hosseini, M.R.M.,
Aghaee, E., Ahmadi, F. & Berijani, S. 2006. Determination of organic
compounds in water using dispersive liquid-liquid microextraction. Journal
of Chromatography A 1116(1-2): 1-9.
Rykowska, I., Ziemblińska, J. &
Nowak, I. 2018. Modern approaches in dispersive liquid-liquid microextraction
(DLLME) based on ionic liquids: A review. Journal of Molecular Liquids 259: 319-339.
Said, M., Ahmad, A. & Mohammad, A.W.
2013. Removal of phenol during ultrafiltration of Palm oil mill effluent
(POME): Effect of pH, ionic strength, pressure and temperature. Der Pharma
Chemica 5(3): 190-196.
Silva, E.M., Rogez, H. & Larondelle,
Y. 2007. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation
and Purification Technology 55(3): 381-387.
Singh, K.P., Malik, A., Sinha, S. &
Ojha, P. 2008. Liquid-phase adsorption of phenols using activated carbons
derived from agricultural waste material. Journal of Hazardous Materials 150(3): 626-641.
Sohaimi, N.M., Saleh, N.M., Ariffin, M.M.,
Beh, S.Y. & Ahmad, R. 2018. An environmentally friendly method for
extraction of parabens in various samples using low viscosity and low cloud
point temperature surfactant. Malaysian Journal of Analytical Sciences 22(3): 365-374.
Wu, Q., Li, Y., Wang, C., Liu, Z., Zang,
X., Zhou, X. & Wang, Z. 2009. Dispersive liquid-liquid microextraction
combined with high performance liquid chromatography-fluorescence detection for
the determination of carbendazim and thiabendazole in environmental samples. Analytica
Chimica Acta 638(2): 139-145.
Yang, C., Qian, Y., Zhang, L. & Feng,
J. 2006. Solvent extraction process development and on-site trial-plant for
phenol removal from industrial coal-gasification wastewater. Chemical
Engineering Journal 117(2):
179-185.
Yousefzadeh, S., Matin, A.R., Ahmadi, E.,
Sabeti, Z., Alimohammadi, M., Aslani, H. & Nabizadeh, R. 2018. Response
surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/nano-Fe0 process for safe water production. Food
and Chemical Toxicology 114: 334-345.
Zhang, P.P., Shi, Z.G., Yu, Q.W. &
Feng, Y.Q. 2011. A new device for magnetic stirring-assisted dispersive
liquid-liquid microextraction of UV filters in environmental water samples. Talanta 83(5): 1711-1715.
*Corresponding author; email: noorashikin@ukm.edu.my
|