Sains Malaysiana
49(10)(2020):
2465-2476
http://dx.doi.org/10.17576/jsm-2020-4910-12
Time-Kill
Assay of N-(2-Bromoethyl)-7-Chloroquinilin-4-Amine (ACP 4A) with Fungistatic
Activity against Aspergillus fumigatus
(Asai
Masa Kematian Sebatian N-(2-Bromoetil)-7-Kloroquinilin-4-Amina (ACP 4A)
dengan Aktiviti Fungistatiknya terhadap Aspergillus fumigatus)
DAYANG
FREDALINA BASRI1, KUEK SZE YEE1, JACINTA SANTHANAM2,
MOHD ASYRAF SHAMSUDIN3, NUR HANIS ZAKARIA3, JALIFAH LATIP3 & NURUL IZZATY HASSAN3*
1Centre for Diagnostic, Therapeutic &
Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal
Territory, Malaysia
2Centre for Toxicology and Health Risk
Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan
Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
3Department of Chemical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received:
27 August 2019/Accepted: 4 May 2020
ABSTRACT
Six
pyrano[2,3-c]pyrazole-3-carboxylate and quinoline derivatives (ACP 1A, ACP 1B,
ACP 1C, ACP 1D, ACP 2A and ACP 4A) synthesized and screened for antimicrobial
activity against two selected Gram-positive bacteria (Staphylococcus
aureus and Bacillus subtilis),
three Gram-negative bacteria (Klebsiella pneumonia, Pseudomonas aeruginosa,
and Escherichia coli), two yeast strains (Candida albicans and Candida
glabrata) and two filamentous fungi (Aspergillus niger and Aspergillus
fumigatus) using agar well diffusion method. Minimum inhibitory
concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC)
of the compounds were determined using broth microdilution and streak plate
method, respectively. Time-kill assay (TKA) analysis of
N-(2-bromoethyl)-7-chloroquinilin-4-amine (ACP 4A) was subsequently conducted
throughout the 24 h incubation period against A. fumigatus. Only ACP 4A
was chosen for the evaluation of TKA analysis because the broth dilution assay
confirmed that it is the most potent compound with antifungal activity. E.
coli was the only one found to be susceptible to the ACP 4A compound at 20
and 30 mg mL-1 with an inhibition zone value of 15.00 ± 0.00 and
19.00 ± 0.00 mm, respectively. MIC values of ACP 4A compound against S.
aureus and C. albicans were 800 µg mL-1. A. niger and A. fumigatus exhibited the highest susceptibility towards ACP 4A
with the same MIC value (200 µg mL-1). ACP 4A showed fungicidal effect against C.
glabrata with the same MIC and MFC values at 800 µg mL-1. From
TKA analysis, ACP 4A at 1 × MIC and 2 × MIC did not show fungicidal activity
against A. fumigatus. In conclusion, ACP 4A has the potential to be
developed as a fungistatic (non-fungicidal) antifungal agent, which is an
advantage compared to other known fungicidal compounds, particularly in
patients with a healthy immune system.
Keywords: Antimicrobial; bacteria; fungi;
pyrano[2,3-c] pyrazole-3-carboxylate; quinoline
ABSTRAK
Enam terbitan
kumpulan pirano[2,3-c]pirazola-3-karboksil dan kuinolina (ACP 1A, ACP 1B, ACP
1C, ACP 1D, ACP 2A, dan ACP 4A) telah disaring untuk aktiviti antimikrob ke
atas dua bakteria Gram positif (Staphylococcus aureus dan Bacillus subtilis), tiga bakteria
Gram negatif (Klebsiella pneumoniae, Pseudomonas aeruginosa dan Escherichia coli), dua strain yis (Candida albicans dan Candida glabrata) dan dua spesies fungus
berfilamen (Aspergillus niger dan Aspergillus fumigatus) menggunakan kaedah resapan telaga. Nilai kepekatan perencatan minimum (MIC) dan
kepekatan bakterisid/fungisid minimum (MBC/MFC) sebatian ditentukan menggunakan
kaedah mikropencairan kaldu dan teknik coretan plat. Asai masa kematian (TKA)
sepanjang tempoh inkubasi selama 24 jam untuk sebatian
N-(2-Bromoetil)-7-klorokuinilin-4-amina (ACP 4A) ditentukan ke atas A.
fumigatus. Hanya E. coli sahaja didapati rentan terhadap sebatian ACP
4A pada 20 dan 30 mg mL-1 dengan nilai zon perencatan masing-masing,
15.00 ± 0.00 dan 19.00 ± 0.00 mm. Nilai MIC sebatian ACP 4A terhadap S.
aureus dan C. albicans adalah 800 µg mL-1. A. niger dan A. fumigatus menunjukkan kerentanan yang paling tinggi terhadap
sebatian ACP 4A dengan nilai MIC yang sama (200 µg mL-1). Sebatian
ACP 4A menunjukkan kesan fungisid ke atas C. glabrata dengan nilai MIC
dan MFC yang sama iaitu 800 µg mL-1. Daripada analisis TKA, ACP 4A
pada 1 × MIC dan 2 × MIC tidak menunjukkan aktiviti fungisid terhadap A.
fumigatus. Kesimpulannya, sebatian ACP 4A berpotensi untuk dimajukan sebagai
agen antikulat fungistatik yang merupakan kelebihan berbanding dengan agen fungisid
yang lain, terutamanya pada pesakit dengan immunisasi yang baik.
Kata
kunci: Antimikrob; bakteria; kuinolina; kulat;
pirano[2,3-c]pirazola-3-karboksil
REFERENCES
Ambethkar, S., Padmini, V. &
Bhuvanesh, N. 2015. A green and efficient protocol for the synthesis of
dihydropyranol[2,3-c]pyrazole derivatives via a one-pot, four component
reaction by grinding method. Journal of
Advanced Research 6(6): 975-985.
Bahrin, L.G., Sarbu, L.G., Hopf,
H., Jones, P.G., Babii, C., Stefan, M. & Birsa, M.L. 2016. The influence of
halogen substituents on the biological properties of sulfur-containing
flavonoids. Bioorganic & Medicinal
Chemistry 24(14): 3166-3173.
CLSI.
2008. M38-A2. Reference Method for Broth
Dilution Antifungal Susceptibility Testing of Filamentous Fungi; approved
standard-second edition. CLSI, Wayne, PA, USA.
Constantino,
L. & Barlocco, D. 2006. Privileged structures as leads in medicinal
chemistry. Current Medicinal Chemistry 13(1):
65-85.
El Shehry, M.F., Ghorab, M.M., Abbas, S.Y., Fayed,
E.A., Shedid, S.A. & Ammar, Y.A. 2018. Quinoline derivatives bearing
pyrazole moiety: Synthesis and biological evaluation as possible antibacterial
and antifungal agents. European Journal
of Medicinal Chemistry 143(2018): 1463-1473.
Eswaran, S., Adhikari, A.V.,
Chowdhury, I.H., Pal, N.K. & Thomas, K. 2010. New quinoline derivatives:
synthesis and investigation of antibacterial and antituberculosis properties. European Journal of Medicinal Chemistry 45(8): 3374-3383.
Garudachari, B., Satyanarayana, M., Thippeswamy, B.,
Shivakumar, C., Shivananda, K., Hegde, G. & Isloor, A.M. 2012. Synthesis,
characterization and antimicrobial studies of some new quinoline incorporated
benzimidazole derivatives. European
Journal of Medicinal Chemistry 54(2012): 900-906.
Joly, V., Bolard, J. & Yeni, P. 1992. In vitro models for studying toxicity of
antifungal agents. Antimicrobial Agents and Chemotherapy 36(9): 1799-1804.
Kamath, P.R., Sunil, D. & Ajees, A.A. 2016.
Synthesis of indole–quinoline–oxadiazoles: Their anticancer potential and
computational tubulin binding studies. Research
on Chemical Intermediates 42(6): 5899-5914.
Kaur, K., Jain, M., Reddy, R.P. & Jain, R. 2010.
Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry 45(8): 3245-3264.
King, T., Dykes, G. & Kristianti, R. 2008.
Comparative evaluation of methods commonly used to determine antimicrobial
susceptibility to plant extracts and phenolic compounds. Journal of AOAC International 91(6): 1423-1429.
Klančnik, A., Piskernik, S., Jeršek, B. &
Možina, S.S. 2010. Evaluation of diffusion and dilution methods to determine
the antibacterial activity of plant extracts. Journal of Microbiological Methods 81(2): 121-126.
Mallamace, F., Corsaro, C., Mallamace, D.,
Vasi, C., Vasi, S. & Stanley, H.E. 2016. Dynamical properties of
water-methanol solutions. The Journal of
Chemical Physics 144(6): 064506.
Mandhane, P.G., Joshi, R.S., Mahajan,
P.S., Nikam, M.D., Nagargoje, D.R. & Gill, C.H. 2015. Synthesis,
characterization, and antimicrobial screening of substituted quiazolinones
derivatives. Arabian Journal of Chemistry 8(4): 474-479.
Mann, C. & Markham, J. 1998. A new
method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology 84(4):
538-544.
Mohammat, M.F., Maarop,
M.S., Shaameri, Z., Wibowo, A., Johari, S.A. & Hamzah, A.S. 2018. Practical
synthesis and electronic study of non-spiro and spiropyrano [2, 3-c]
pyrazole-3-carboxylate derivatives via uncatalyzed domino one-pot,
four-component reactions. Organic Communication 11: 149-162.
Moreno, S., Scheyer, T., Romano,
C.S. & Vojnov, A.A. 2006. Antioxidant and antimicrobial activities of
rosemary extracts linked to their polyphenol composition. Free Radical Research 40(2): 223-231.
Musiol,
R., Serda, M., Hensel-Bielowka, S. & Polanski, J. 2010a. Quinoline-based
antifungals. Current Medicinal Chemistry 17(18):
1960-1973.
Musiol,
R., Jampilek, J., Nycz, J.E., Pesko, M., Carroll, J., Kralova, K., Vejsova, M.,
O’Mahony, J., Coffey, A., Mrozek, A. & Polanski, J. 2010b. Investigating
the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules 15(1): 288-304.
Osés, S.M., Pascual-Mate, A., De La
Fuente, D., De Pablo, A., Fernandez-Muino, M.A. & Sancho, M.T. 2016.
Comparison of methods to determine the antibacterial activity of honeys against Staphylococcus aureus. NJAS-Wageningen
Journal of Life Sciences 78(2016): 29-33.
Pawar, P., Mane, B., Salve, M. &
Bafana, S. 2017. Synthesis and anticonvulsant activity of
n-substituted-7-hydroxy-4-methyl-2-oxa-quinoline derivatives. International Journal of Drug Research and
Technology 3(3): 60-66.
Ramírez-Prada, J., Robledo, S.M., Vélez,
I.D., del Pilar Crespo, M., Quirogo, J., Abonia, R., Montoya, A., Svetaz, L.,
Zacchino, S. & Insuasty, B. 2017. Synthesis of novel quinoline-based
4,5-dihydro-1H-pyrazoles as potential
anticancer, antifungal, antibaterial and antiprotozoal agents. European Journal of Chemistry 131(2017):
237-254.
Shakhatreh, M.A.K., Al-Smadi, M.L.,
Khabour, O.F., Shuaibu, F.A., Hussein, E.I. & Alzoubi, K.H. 2016. Study of
the antibacterial and antifungal activities of synthetic benzyl bromides,
ketones, and corresponding chalcone derivatives. Drug Design, Development and Therapy 10(2016): 3653.
Stein, R.A. 2011. Bacterial infections of
humans: Epidemiology and control. JAMA 305(14): 1488-1489.
Vaghasiya, R., Ghodasara, H., Vachharajani,
P. & Shah, V. 2014. Synthesis,
characterization, and biological evaluation of
6-substituted-2-(substituted-phenyl)-quinoline derivatives bearing 4-amino-1,
2, 4-triazole-3-thiol ring at c-4 position. International
Letters of Chemistry, Physics and Astronomy 8: 30-37.
Vandekerckhove,
S., Tran, H.G., Desmet, T. & D’hooghe, M. 2013. Evaluation of
(4-aminobutyloxy) quinolines as a novel class of antifungal agents. Bioorganic
& Medicinal Chemistry Letters 23(16): 4641-4643.
*Corresponding author; email: drizz@ukm.edu.my
|