Sains Malaysiana 49(10)(2020): 2559-2564

http://dx.doi.org/10.17576/jsm-2020-4910-21

 

Photoluminescence and Raman Scattering of GaAs1-xBix Alloy

(Kefotopendarcahayaan dan Serakan Raman pada Aloi GaAs1-xBix)

 

L. HASANAH1, C. JULIAN1, B. MULYANTI2, A. ARANSA1, R. SUMATRI1, M.H. JOHARI3, J.P.R. DAVID4 & A.R. MOHMAD3*

 

1Department of Physics Education, Universitas Pendidikan Indonesia, Dr. Setiabudhi St. No. 229, 40154, Bandung, Indonesia

 

2Department of Electrical Engineering Education, Universitas Pendidikan Indonesia, Dr. Setiabudhi St. No. 229, 40154 Bandung, Indonesia

 

3Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Department of Electronics and Electrical Engineering, University of Sheffield, Mappin Street S1 3JD, Sheffield, United Kingdom

 

Received: 4 March 2020/Accepted: 17 April 2020

 

ABSTRACT

Photoluminescence (PL) and Raman spectra of GaAs1-xBix samples grown at different rates (0.09 to 0.5 µm/h) were investigated. The PL peak wavelength initially redshifted with the increase of growth rate and reached the longest wavelength (1158 nm) for sample grown at 0.23 µm/h. This is followed by PL peak wavelength blueshift for higher growth rates. The Raman data show peaks at 162, 228, 270, and 295 cm-1 which can be attributed to GaAs like phonons. GaBi like vibrational modes were also observed at 183 and 213 cm-1. However, the intensity of Bi induced phonons is significantly weaker compared to GaAs due to low concentration of Bi compared to As and thin GaAs1-xBix epilayer. The PL data and GaAs transverse optical (TO) to longitudinal optical (LO) phonons intensity ratio indicate that Bi concentration is highly dependent on the growth rate and the highest Bi concentration was obtained by sample grown at 0.23 µm/h. It is found that the full-width-at-half-maximum (FWHM) of GaAs LO mode increases significantly for samples grown at high growth rates suggesting crystal quality degradation due to lack of surfactant effects.

 

Keywords: GaAsBi; photoluminescence; Raman spectroscopy

 

ABSTRAK

Kefotopendarcahayaan (PL) dan spektrum Raman daripada sampel GaAs1-xBix yang ditumbuhkan pada kadar berbeza (0.09 hingga 0.5 µm/jam) telah dikaji. Pada mulanya, panjang gelombang puncak PL mengalami anjakan merah dengan peningkatan kadar pertumbuhan dan mencapai panjang gelombang tertinggi iaitu 1158 nm untuk sampel yang ditumbuh pada kadar 0.23 µm/jam. Ini diikuti oleh anjakan biru pada kadar pertumbuhan yang lebih tinggi. Data Raman menunjukkan kehadiran beberapa puncak pada nombor gelombang 162, 228, 270 dan 295 cm-1 yang disebabkan oleh fonon GaAs. Selain itu, mod getaran GaBi juga dapat diperhatikan pada 183 dan 213 cm-1. Namun, keamatan fonon GaBi jauh lebih lemah berbanding GaAs disebabkan kepekatan Bi yang rendah berbanding As dan lapisan GaAs1-xBix yang nipis. Data PL dan nisbah keamatan fonon optik melintang (TO) kepada fonon optik membujur (LO) GaAs menunjukkan bahawa kepekatan Bi sangat bergantung kepada kadar pertumbuhan dan kepekatan Bi yang tertinggi diperoleh oleh sampel yang ditumbuh pada kadar 0.23 µm/jam. Kajian ini mendapati bahawa nilai FWHM untuk fonon LO GaAs meningkat dengan ketara untuk sampel yang ditumbuh dengan kadar pertumbuhan yang tinggi dan ini menunjukkan kemerosotan kualiti kristal disebabkan oleh pengurangan kesan surfaktan.

 

Kata kunci: GaAsBi; kefotopendarcahayaan; spektroskopi Raman

 

REFERENCES

Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K. & Krotkus, A. 2007. Valence band anticrossing in GaBiAs. Applied Physics Letters 91(5): 051909.

Bastiman, F., Mohmad, A.R.B., Ng, J.S., David, J.P.R. & Sweeney, S.J. 2012. Non-stoichiometric GaAsBi/GaAs (100) molecular beam epitaxy growth. Journal of Crystal Growth 338(1): 57-61.

Bertulis, K., Krotkus, A., Aleksejenko, G., Pačebutas, V., Adomavičius, R., Molis, G. & Marcinkevičius, S. 2006. GaBiAs: A material for optoelectronic terahertz devices. Applied Physics Letters 88(20): 201112.

Erol, A., Akalin, E., Kara, K., Aslan, M., Bahrami-Yekta, V., Lewis, R.B. & Tiedje, T. 2017. Raman and AFM studies on nominally undoped, p- and n-type GaAsBi alloys. Journal of Alloys and Compounds 722: 339-343.

Francoeur, S., Seong, M.J., Mascarenhas, A., Tixier, S., Adamcyk, M. & Tiedje, T. 2003. Band gap of GaAsBi, 0<x<3.6%. Applied Physics Letters 82(22): 3874-3876.

Henini, M., Ibanez, J., Schmidbauer, M., Shafi, M., Novikov, S.V., Turyanska, L., Molina, S.I., Sales, D.L., Chisholm, M.F. & Misiewicz, J. 2007. Molecular beam epitaxy of GaBiAs on (311)B GaAs substrates. Applied Physics Letters 91(25): 251909.

Huang, W., Oe, K., Feng, G. & Yoshimoto, M. 2005. Molecular-beam epitaxy and characteristics of GaNAs1-x-yBix. Journal of Applied Physics 98(5): 053505.

Kunzer, M., Jost, W., Kaufmann, U., Hobgood, H.M. & Thomas, R.N. 1993. Identification of the BiGa heteroantisite defect in GaAs: Bi. Physics Review B (Condensed Matter) 48(7): 4437-4441.

Lewis, R.B., Masnadi-Shirazi, M. & Tiedje, T. 2012. Growth of high Bi concentration GaAs1-x Bix by molecular beam epitaxy. Applied Physics Letters 101(8): 082112.

Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T. & Zhang, Y. 2009. Composition dependence of photoluminescence of GaAs1-x­Bix alloys. Applied Physics Letters 95(4): 041903.

Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T. & Whitwick, M.B. 2008. Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1-xBix. Applied Physics Letters 92(19): 192110.

Mohmad, A.R., Bastiman, F., Hunter, C.J., Harun, F., Reyes, D.F., Sales, D.L., Gonzales, D., Richards, R.D., David, J.P.R. & Majlis, B.Y. 2015. Bismuth concentration inhomogeneity in GaAsBi bulk and quantum well structures. Semiconductor Science and Technology 30(9): 094018.

Mohmad, A.R., Bastiman, F., Hunter, C.J., Richards, R.D., Sweeney, S.J., Ng, J.S., David, J.P.R. & Majlis, B.Y. 2014. Localization effects and band gap of GaAsBi alloys. Physica Status Solidi (B) 251(6): 1276-1281.

Mohmad, A.R., Bastiman, F., Ng, J.S., Sweeney, S.J. & David, J.P.R. 2011. Photoluminescence investigation of high quality GaAs1-xBix on GaAs. Applied Physics Letters 98(12): 122107.

Oe, K. 2002. Characteristics of semiconductor alloy GaAs1-x­Bix. Japanese Journal of Applied Physics 41(5A): 2801.

Ptak, A.J., France, R., Beaton, D.A., Alberi, K., Simon, J., Mascarenhas, A. & Jiang, C.S. 2012. Kinetically limited growth of GaAsBi by molecular-beam epitaxy. Journal of Crystal Growth 338(1): 107-110.

Seong, M.J., Francoeur, S., Yoon, S., Mascarenhas, A., Tixier, S., Adamcyk, M. & Tiedje, T. 2005. Bi-induced vibrational modes in GaAsBi. Superlattices and Microstructure 37(6): 394-400.

Steele, J.A., Lewis, R.A., Henini, M., Lemine, O.M., Fan, D., Mazur, Y.I., Dorogan, V.G., Grant, P.C., Yu, S.Q. & Salamo, G.J. 2014. Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: Optical determination of carrier concentration. Optic Express 22(10): 11680-11689.

Steele, J.A., Lewis, R.A., Henini, M., Lemine, O.M. & Alkaoud, A. 2013. Raman scattering studies of strain effects in (100) and (311)B GaAs1-xBix epitaxial layers. Journal of Applied Physics 114(19): 193516.

Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P. & Schiettekatte, F. 2003. Molecular beam epitaxy growth of GaAs1-xBix. Applied Physics Letters 82(14): 2245-2247.

Verma, P., Oe, K., Yamada, M., Harima, H., Herms, M. & Irmer, G. 2001. Raman studies on GaAs1-xBix and InAs1-xBix. Journal of Applied Physics 89(3): 1657-1663.

Zhang, Y., Mascarenhas, A. & Wang, L.W. 2005. Similar and dissimilar aspects of III - V semiconductors containing Bi versus N. Physics Review B 71(15): 155201.

 

*Corresponding author; email: armohmad@ukm.edu.my

 

 

 

 

previous