Sains Malaysiana 49(10)(2020): 2559-2564
http://dx.doi.org/10.17576/jsm-2020-4910-21
Photoluminescence
and Raman Scattering of GaAs1-xBix Alloy
(Kefotopendarcahayaan
dan Serakan Raman pada Aloi GaAs1-xBix)
L.
HASANAH1, C. JULIAN1, B. MULYANTI2, A. ARANSA1,
R. SUMATRI1, M.H. JOHARI3, J.P.R. DAVID4 &
A.R. MOHMAD3*
1Department of Physics Education, Universitas
Pendidikan Indonesia, Dr. Setiabudhi St. No. 229, 40154, Bandung, Indonesia
2Department of Electrical Engineering Education, Universitas
Pendidikan Indonesia, Dr. Setiabudhi St. No. 229, 40154 Bandung, Indonesia
3Institute of Microengineering and Nanoelectronics, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Department of Electronics and Electrical Engineering,
University of Sheffield, Mappin Street S1 3JD, Sheffield, United Kingdom
Received:
4 March 2020/Accepted: 17 April 2020
ABSTRACT
Photoluminescence (PL) and Raman spectra of GaAs1-xBix samples grown at different rates (0.09 to 0.5 µm/h) were investigated. The PL
peak wavelength initially redshifted with the increase of growth rate and
reached the longest wavelength (1158 nm) for sample grown at 0.23 µm/h. This is
followed by PL peak wavelength blueshift for higher growth rates. The Raman
data show peaks at 162, 228, 270, and 295 cm-1 which can be
attributed to GaAs like phonons. GaBi like vibrational modes were also observed
at 183 and 213 cm-1. However, the intensity of Bi induced phonons is
significantly weaker compared to GaAs due to low concentration of Bi compared
to As and thin GaAs1-xBix epilayer. The PL data and GaAs
transverse optical (TO) to longitudinal optical (LO) phonons intensity ratio
indicate that Bi concentration is highly dependent on the growth rate and the
highest Bi concentration was obtained by sample grown at 0.23 µm/h. It is found
that the full-width-at-half-maximum (FWHM) of GaAs LO mode increases
significantly for samples grown at high growth rates suggesting crystal quality
degradation due to lack of surfactant effects.
Keywords:
GaAsBi; photoluminescence; Raman spectroscopy
ABSTRAK
Kefotopendarcahayaan (PL) dan spektrum
Raman daripada sampel GaAs1-xBix yang ditumbuhkan pada
kadar berbeza (0.09 hingga 0.5 µm/jam) telah dikaji. Pada mulanya, panjang
gelombang puncak PL mengalami anjakan merah dengan peningkatan kadar
pertumbuhan dan mencapai panjang gelombang tertinggi iaitu 1158 nm untuk sampel
yang ditumbuh pada kadar 0.23 µm/jam. Ini diikuti oleh anjakan biru pada kadar
pertumbuhan yang lebih tinggi. Data Raman menunjukkan kehadiran beberapa puncak
pada nombor gelombang 162, 228, 270 dan 295 cm-1 yang disebabkan
oleh fonon GaAs. Selain itu, mod getaran GaBi juga dapat diperhatikan
pada 183 dan 213 cm-1. Namun, keamatan fonon GaBi jauh lebih lemah
berbanding GaAs disebabkan kepekatan Bi yang rendah berbanding As dan lapisan
GaAs1-xBix yang nipis. Data PL dan nisbah keamatan fonon
optik melintang (TO) kepada fonon optik membujur (LO) GaAs menunjukkan bahawa
kepekatan Bi sangat bergantung kepada kadar pertumbuhan dan kepekatan Bi yang
tertinggi diperoleh oleh sampel yang ditumbuh pada kadar 0.23 µm/jam. Kajian
ini mendapati bahawa nilai FWHM untuk fonon LO GaAs meningkat dengan ketara
untuk sampel yang ditumbuh dengan kadar pertumbuhan yang tinggi dan ini
menunjukkan kemerosotan kualiti kristal disebabkan oleh pengurangan kesan
surfaktan.
Kata
kunci: GaAsBi; kefotopendarcahayaan;
spektroskopi Raman
REFERENCES
Alberi,
K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K. & Krotkus, A.
2007. Valence band anticrossing in GaBiAs. Applied Physics Letters 91(5): 051909.
Bastiman, F., Mohmad,
A.R.B., Ng, J.S., David, J.P.R. & Sweeney, S.J. 2012. Non-stoichiometric
GaAsBi/GaAs (100) molecular beam epitaxy growth. Journal of Crystal
Growth 338(1): 57-61.
Bertulis, K., Krotkus,
A., Aleksejenko, G., Pačebutas,
V., Adomavičius, R., Molis, G. & Marcinkevičius, S. 2006. GaBiAs: A material for optoelectronic
terahertz devices. Applied Physics Letters 88(20): 201112.
Erol, A., Akalin, E.,
Kara, K., Aslan, M., Bahrami-Yekta, V., Lewis, R.B. & Tiedje, T. 2017.
Raman and AFM studies on nominally undoped, p- and n-type GaAsBi alloys. Journal
of Alloys and Compounds 722: 339-343.
Francoeur, S., Seong,
M.J., Mascarenhas, A., Tixier, S., Adamcyk, M. & Tiedje, T. 2003. Band gap of GaAsBi, 0<x<3.6%. Applied
Physics Letters 82(22):
3874-3876.
Henini, M., Ibanez, J.,
Schmidbauer, M., Shafi, M., Novikov, S.V., Turyanska, L., Molina, S.I., Sales,
D.L., Chisholm, M.F. & Misiewicz, J. 2007. Molecular beam epitaxy of GaBiAs on (311)B GaAs substrates. Applied
Physics Letters 91(25):
251909.
Huang, W., Oe, K., Feng, G. &
Yoshimoto, M. 2005. Molecular-beam epitaxy and characteristics of GaNAs1-x-yBix. Journal of Applied Physics 98(5): 053505.
Kunzer, M., Jost, W.,
Kaufmann, U., Hobgood, H.M. & Thomas, R.N. 1993. Identification of the BiGa heteroantisite defect in GaAs: Bi. Physics Review B (Condensed
Matter) 48(7): 4437-4441.
Lewis, R.B.,
Masnadi-Shirazi, M. & Tiedje, T. 2012. Growth of high Bi concentration GaAs1-x Bix by molecular beam epitaxy. Applied Physics Letters 101(8): 082112.
Lu, X., Beaton, D.A.,
Lewis, R.B., Tiedje, T. & Zhang, Y. 2009. Composition dependence of photoluminescence of GaAs1-xBix alloys. Applied Physics Letters 95(4): 041903.
Lu, X., Beaton, D.A.,
Lewis, R.B., Tiedje, T. & Whitwick, M.B. 2008. Effect of molecular beam epitaxy growth conditions on the Bi content of
GaAs1-xBix. Applied Physics Letters 92(19):
192110.
Mohmad, A.R., Bastiman,
F., Hunter, C.J., Harun, F., Reyes, D.F., Sales, D.L., Gonzales, D., Richards,
R.D., David, J.P.R. & Majlis, B.Y. 2015. Bismuth concentration inhomogeneity in GaAsBi bulk and quantum well
structures. Semiconductor Science and Technology 30(9):
094018.
Mohmad, A.R., Bastiman,
F., Hunter, C.J., Richards, R.D., Sweeney, S.J., Ng, J.S., David, J.P.R. &
Majlis, B.Y. 2014. Localization effects and band gap of GaAsBi alloys. Physica
Status Solidi (B) 251(6): 1276-1281.
Mohmad, A.R., Bastiman,
F., Ng, J.S., Sweeney, S.J. & David, J.P.R. 2011. Photoluminescence investigation of high quality GaAs1-xBix on GaAs. Applied Physics Letters 98(12): 122107.
Oe, K. 2002.
Characteristics of semiconductor alloy GaAs1-xBix. Japanese
Journal of Applied Physics 41(5A):
2801.
Ptak, A.J., France, R.,
Beaton, D.A., Alberi, K., Simon, J., Mascarenhas, A. & Jiang, C.S. 2012. Kinetically
limited growth of GaAsBi by molecular-beam epitaxy. Journal of Crystal
Growth 338(1): 107-110.
Seong, M.J., Francoeur,
S., Yoon, S., Mascarenhas, A., Tixier, S., Adamcyk, M. & Tiedje, T. 2005.
Bi-induced vibrational modes in GaAsBi. Superlattices and Microstructure 37(6): 394-400.
Steele, J.A., Lewis,
R.A., Henini, M., Lemine, O.M., Fan, D., Mazur, Y.I., Dorogan, V.G., Grant,
P.C., Yu, S.Q. & Salamo, G.J. 2014. Raman
scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: Optical determination of carrier concentration. Optic
Express 22(10): 11680-11689.
Steele, J.A., Lewis,
R.A., Henini, M., Lemine, O.M. & Alkaoud, A. 2013. Raman scattering studies
of strain effects in (100) and (311)B GaAs1-xBix epitaxial layers. Journal of Applied Physics 114(19): 193516.
Tixier, S., Adamcyk,
M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P. & Schiettekatte, F.
2003. Molecular beam epitaxy growth of GaAs1-xBix. Applied
Physics Letters 82(14):
2245-2247.
Verma, P., Oe, K.,
Yamada, M., Harima, H., Herms, M. & Irmer, G. 2001. Raman studies on GaAs1-xBix and InAs1-xBix. Journal of Applied Physics 89(3): 1657-1663.
Zhang, Y., Mascarenhas,
A. & Wang, L.W. 2005. Similar and
dissimilar aspects of III - V semiconductors containing Bi versus N. Physics
Review B 71(15): 155201.
*Corresponding author; email: armohmad@ukm.edu.my
|