Sains Malaysiana
49(10)(2020): 2573-2585
http://dx.doi.org/10.17576/jsm-2020-4910-23
Analisis
Penskalaan bagi Kejadian Hujan Ekstrim di Semenanjung Malaysia
(Scaling Analysis
for Extreme Rainfall Events in Peninsular Malaysia)
WAN
ZAWIAH WAN ZIN*, ABDUL AZIZ JEMAIN, MARINA ZAHARI & KAMARULZAMAN IBRAHIM
Jabatan Sains Matematik, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received:
19 July 2018/Accepted: 16 April 2020
ABSTRAK
Maklumat
mengenai kehujanan ekstrim dalam skala masa berbeza diperlukan dalam pembinaan
lengkuk keamatan-tempoh-kekerapan (IDF). IDF menjadi rujukan utama dalam
pembinaan infrastruktur berkaitan hujan seperti sistem perparitan dan empangan.
Seringkali, agak sukar untuk mendapatkan data dalam pelbagai skala seperti per
minit, per jam dan per hari. Justeru, kajian ini menggunakan konsep penskalaan
yang mengambil kira sifat kebersandaran antara data hujan ekstrim pada sub
skala yang berbeza dalam mengkaji ciri-ciri hujan ekstrim. Dalam kajian ini,
data hujan maksimum dalam tempoh sejam sehingga 48 jam dari tahun 1970-2008 di
43 buah stesen cerapan hujan di Semenanjung Malaysia telah diuji. Penentuan
jenis penskalaan yang sesuai; sama ada penskalaan ringkas atau pelbagai diuji
berdasarkan teori skala tak varians. Hasil mendapati bahawa 41 stesen kajian
memenuhi syarat penskalaan ringkas dan seterusnya, faktor penskalaan eksponen
bagi setiap stesen telah ditentukan. Ini diikuti dengan pemadanan taburan
ekstrim yang paling sesuai dengan data kajian bagi setiap stesen memandangkan
konsep pembangunan IDF berasaskan taburan statistik. Lima taburan ekstrim iaitu
taburan Ekstrim Teritlak (GEV), Logistik Teritlak (GLO), Gumbel, Pareto
Teritlak (GPA) dan Pearson 3-Parameter (P3) telah dipadankan kepada data hujan
maksimum harian dan hasil mendapati padanan data dengan GEV dan GLO di
kebanyakan stesen. Berdasarkan maklumat taburan terbaik, nilai-nilai ulangan
dihitung untuk pelbagai skala masa dengan menggunakan maklumat daripada hanya
satu skala masa sahaja. Hasil kajian ini ternyata membolehkan pengurusan data
yang lebih cekap dalam pembangunan IDF kerana data daripada hanya satu skala
masa sahaja sudah mencukupi untuk menganggar nilai pada skala masa yang berlainan.
Kata kunci: IDF; konsep penskalaan;
lengkung keamatan-tempoh-kekerapan; taburan nilai ekstrim
ABSTRACT
Information
on extreme rainfall at various time scales is needed in the construction of the
Intensity-Duration-Frequency (IDF) curve. Thus, the concept of scaling which
takes into account of the dependency property of extreme rainfall data at
various time scales in studying the characteristics of extreme rainfall is
investigated in this study. Maximum rainfall data in the scales of one-hour
until 48-hour for the years 1970 to 2008 at 43 rain-gauge stations were
analyzed. The determination of the suitable type of scaling, either the simple
scaling or multi-scaling, was tested based on the scale-invariance property.
The result shows that 41 stations satisfied the simple scaling property and the
scaling exponent for each station was determined. IDF concept requires data to
be fitted by a suitable statistical distribution, thus, five types of extreme
distributions, namely the Generalised Extreme Values (GEV), Generalised
Logistic (GLO), Gumbel, Generalised Pareto (GPA) and Pearson 3-Parameter (P3)
were fitted to the maximum daily rainfall data and the results showed that most
stations followed the GEV and GLO. Subsequently, based on the best-fitted distribution
for each station and the estimated scaling factor, the return values for
various time scales at each station can be calculated using information from
only one time scale. The results of this study will enable the efficient
management of data in the development of IDF as it only requires data from one
time scale to estimate values at various other time scales.
Keywords: Extreme value
distribution; intensity-duration-frequency curve; IDF; scaling concept
REFERENCES
Agbazo, M., Koton’Gobi, G., Kounouhewa, B., Alamou, E. & Afouda, A.
2016. Estimation of IDF curves of extreme rainfall by simple scaling in
Northern Oueme Valley, Benin Republic (West Africa). Earth Sciences Research Journal 20(1): D1-D7.
Bara, M., Gaal, L., Kohnova, S., Szolgat, J. & Hlavcova, K. 2010. On
the use of the simple scaling of heavy rainfall in a regional estimation of IDF
curves in Slovakia. Journal of Hydrology
and Hydromechanics 58(1): 49-63.
Blöschl, G. & Sivapalan, M. 1995. Scale issues in hydrological
modelling: A review. Hydrological
Processes 9(3-4): 251-290.
Bougadis, J. & Adamowski, K. 2006. Scaling model of rainfall
intensity-duration-frequency relationship. Hydrological
Processes 20: 3747-3757.
Burlando, P. & Rosso, R. 1996. Scaling and multi-scaling models of
depth-duration-frequency curves for storm precipitation. Journal of Hydrology 187(1/2): 45-64.
Ceresetti, D., Molinié, G. & Creutin, J.D. 2010. Scaling properties
of heavy rainfall at short duration: A regional analysis. Water Resources Research 46(9): 1-12.
De Michele, C.,
Kottegoda, N.T. & Rosso, R. 2002. IDAF (Intensity-duration-area frequency)
curves of extreme storm rainfall: A scaling approach. Water, Science & Technology 45(2):
83-90.
Deni, S.M., Jamaludin, S., Zin, W.Z.W & Jemain, A.A. 2009. Trends of
wet spells over Peninsular Malaysia during monsoon seasons. Sains Malaysiana 38(2): 133-142.
Dubrulle, B., Graner, F.
& Sornette, D. 1997. Scale Invariance and Beyond, EDP Sciences, Les Houches
Workshop, Les Ulis, France, 10-14
March.
Eli, A., Shaffie, M. & Zin, W.Z.W. 2012. Preliminary study on
bayesian extreme rainfall analysis: A case study of Alor Setar, Kedah,
Malaysia. Sains Malaysiana 41(11):
1403-1410.
Ellouze, M. & Abida, H. 2008. Regional flood frequency analysis in
Tunisia: Identification of regional distributions. Water Resources Management 22(8): 943-957.
Gupta, V.K. &
Waymire, E. 1990. Multiscaling properties of spatial and river flow
distributions. Journal of Geophysical
Research: Atmospheres 95(D3): 1999-2009.
Hamidon, N., Harun, S., Sunar, N.M., Hamid, N.H.A., Muhamad, M.S.,
Harun, H., Ali, R., Awang, M., Rahman, M.A.A., Ahmad, F., Musa, K., Yusof, F.M.
& Mustafa, M.S.S. 2019. Prediction of future climate change for rainfall in
the upper Kurau River Basin, Perak using statistical downscaling model (SDSM). Civil Engineering and Architecture 7(6A): 33-42.
Hanawi, S.A., Zin, W.Z.W., Jemain, A.A & Ahmad, R. 2011. Fenomena
kehujanan di Semenanjung Malaysia berdasarkan Indeks Kerpasan Piawai. Sains Malaysiana 40(11): 1277-1284.
Hassan, Z. & Harun, S. 2012. Application of statistical downscaling
model for long lead rainfall prediction in Kurau River catchment of Malaysia. Malaysian Journal of Civil Engineering 24(1): 1-12.
Hassan, Z., Mansor, M.F.M. & Kamarudzaman, A.N. 2019. Rainfall
projection corresponding to climate scenarios based on statistical down-scaling
model over Perlis, Malaysia. Journal of
Engineering Research and Education 11: 9-14.
Hosking, J.R.M. 1990. L-Moments: Analysis and estimation of
distributions using linear combinations of order statistics. Journal of the Royal Statistical Society.
Series (B) 52(1): 105-124.
Langousis, A.,
Carsteanu, A.A. & Deidda, R. 2013. A simple approximation to multifractal
rainfall maxima using a generalized extreme value distribution model. Stochastic Environmental Research and Risk
Assessment 27: 1525-1531.
Lovejoy, S. &
Schertzer, D. 1985. Generalized scale invariance in the atmosphere and fractal
models of rain. Water Resources Research 21(8): 1233-1250.
Mahmud, M.R., Hashim, M., Matsuyama, H., Numata, S. & Hosaka, T.
2018. Spatial downscaling of satellite precipitation data in humid tropics
using a site-specific seasonal coefficient. Water 10(4): 409.
Menabde, M., Seed, A. & Pegram, G. 1999. A simple scaling model for
extreme rainfall. Water Resources
Research 35(1): 335-339.
Noor, M. & Ismail, T. 2018. Downscaling of daily average rainfall of
Kota Bharu Kelantan, Malaysia. Malaysian
Journal of Civil Engineering 30(1): 13-22.
Omotosho, T.V., Mandeep, J.S., Abdullah, M. & Adediji, A.T. 2013.
Distribution of one-minute rain rate in Malaysia derived from TRMM satellite
data. Annals of Geophysics 31(11):
2013-2022.
Rahman, M.M. 2015. Development of rainfall intensity-duration-frequency
relationships from daily rainfall data for the major cities in Bangladesh based
on scaling properties. International
Journal for Scientific Research & Development 3(8): 627-631.
Rana, A., Bengtsson, L., Olsson, J. & Jothiprakash, V. 2013.
Development of IDF-curves for tropical India by random cascade modeling. Hydrology and Earth System Sciences
Discussions 10(4): 4709-4738.
Rodriguez-Iturbe, I., Gupta, V.K. & Waymire, E. 1984. Scale
considerations in the modeling of temporal rainfall. Water Resources Research 20(11): 1611-1619.
Sivapalan, M. & Blöschl, G. 1998. Transformation of point rainfall
to areal rainfall: Intensity-duration-frequency curves. Journal of Hydrology 204(1-4): 150-167.
Soo, E.Z.X., Jaafar, W.Z.W., Lai, S.H., Othman, F., Elshafie, A., Islam,
T., Srivastava, P. & Hadi, H.S.O. 2020. Evaluation of bias-adjusted
satellite precipitation estimations for extreme flood events in Langat river
basin, Malaysia. Hydrology Research 51(1): 105-126.
Syafrina, A.H., Zalina, M.D. & Juneng, L. 2015. Historical trend of
hourly extreme rainfall in Peninsular Malaysia. Theoretical and Applied Climatology 120(1-2): 259-285.
Veneziano, D. &
Langousis, A. 2010. Scaling and fractals in hydrology. In Advances
in Data-Based Approaches for Hydrologic Modeling and Forecasting, edited by Sivakumar, B.
& Berndtsson, R. Singapore: World Scientific Publishing Company. pp. 107-243.
Veneziano, D. &
Furcolo, P. 2002. Multifractality of rainfall and scaling of
intensity-duration-frequency curves. Water
Resources Research 38(12): 42-1.
Vogel, R.M. &
Fennessey, N.M. 1993. L-moment diagrams should replace product moment diagrams. Water Resources Research 29(6):
1745-1752.
Westra, S., Fowler, H.J., Evans, J.P., Alexander, L.V., Berg, P.,
Johnson, F., Kendon, E.J., Lenderink, G. & Roberts, N.M. 2014. Future
changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics 52(3): 522-555.
Yu, P.S, Yang, T.C. & Lin, C.S. 2004. Regional rainfall intensity
formulas based on scaling property of rainfall. Journal of Hydrology 295(1): 108-123.
Zin, W.Z.W., Jamaludin, S.S.S., Deni, S.M. & Jemain, A.A. 2010.
Recent changes in extreme rainfall events in Peninsular Malaysia: 1971–2005. Theoretical and Applied Climatology 99(3-4): 303-314.
Zin, W.Z.W., Jemain, A.A., Ibrahim,
K., Jamaludin, S. & Deni, S.M. 2009. A comparative study of extreme
rainfall in Peninsular Malaysia: With reference to partial duration
and annual extreme series. Sains
Malaysiana 38: 751-760.
*Corresponding
author; email: w_zawiah@ukm.edu.my
|