Sains Malaysiana 49(10)(2020): 2599-2608
http://dx.doi.org/10.17576/jsm-2020-4910-25
Experimental and
Numerical Investigation of Fluid Flow and Heat Transfer in Circular Micro-Channel
(Penyelidikan Uji Kaji
dan Berangka bagi Aliran Bendalir dan Pemindahan Haba dalam Mikro-Saluran
Membulat)
ABDULMAJEED ALMANEEA*
Department of Mechanical and Industrial
Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952,
Saudi Arabia
Received: 28 October 2019/Accepted: 1 May 2020
ABSTRACT
Nowadays, there is a large demand for many electronic
devices such as the laptop, and cell phone. The heat generated by such
electronic component increases due to continuous functioning. Implementing
microchannel could be a good solution despite the heat from microminiature
refrigerators, microelectronics, micro heat pipe spreader, fuel processing
biomedical, and aerospace. Therefore, several investigations have been done to
improve the performance of such continuous operating electronic devices by
dissipating heat with the use of microchannels. In this study, an experimental
and numerical investigation is done for the circular microchannel having the
hydraulic diameter of 253 µm and 63 mm in length under the condition of
constant wall temperature by submerging the microchannels in the oil at
constant temperature and water is forced to pass through total 5 microchannels.
Experimental conducted for various flow rates shows that the microchannel has a
significant impact on the heat transfer rate for the considered flow rate.
Numerical results through COMSOL 5.1 software show good agreement with the
experimental results. It is observed that the heat transfer coefficient
increases with the Reynolds number whereas friction factor decreases with
Reynolds number. Based on numerical and experimental results, empirical
correlations for friction factor and Nusselt number are suggested to provides a
reasonable estimate of heat transfer in the microchannel.
Keywords: Friction factor; heat transfer; microchannels; Nusselt number; Reynolds
number
ABSTRAK
Pada masa ini terdapat banyak permintaan barang
peranti elektronik seperti komputer riba dan telefon bimbit. Haba yang
dihasilkan oleh komponen elektronik akan meningkat dengan penggunaan secara
berterusan. Penggunaan mikrosaluran boleh menjadi penyelesaian yang baik di
sebalik haba yang terhasil daripada peti sejuk mikro, mikroelektronik, penyebar
paip haba mikro, bioperubatan pemprosesan bahan bakar dan aeroangkasa. Oleh
itu, beberapa penyelidikan telah dilakukan untuk meningkatkan prestasi peranti
elektronik yang beroperasi secara berterusan melalui pembuangan haba dengan
penggunaan mikrosaluran. Dalam kajian ini, penyelidikan secara uji kaji dan
berangka telah dijalankan untuk mikrosaluran bulat yang berdiameter 253 µm dan
panjang 63 mm di bawah keadaan suhu dinding tetap dengan merendam mikrosaluran
dalam minyak pada suhu tetap dan air dipaksa melalui keseluruhan 5 mikrosaluran
secara keseluruhan. Uji kaji dijalankan dalam kadar aliran yang berbeza dan ia
menunjukkan bahawa mikrosaluran memberi kesan ketara terhadap kadar pemindahan
haba untuk kadar aliran yang terpilih. Keputusan berangka menggunakan
perisian COMSOL 5.1 menunjukkan perbandingan yang baik dengan keputusan uji
kaji. Pemerhatian kajian menunjukkan bahawa pekali pemindahan haba meningkat
dengan nombor Reynolds manakala faktor geseran menurun dengan nombor Reynolds.
Berdasarkan keputusan berangka dan uji kaji, korelasi empirik untuk faktor
geseran dan nombor Nusselt dapat menyarankan anggaran yang bersesuaian dengan pemindahan
haba dalam saluran mikro.
Kata kunci: Faktor geseran; nombor Nusselt;
nombor Reynolds; pemindahan haba; saluran mikro
REFERENCES
Ababaei, A., Arani, A.A. & Aghaei, A. 2017.
Numerical investigation of forced convection of nanofluid flow in
microchannels: Effect of adding micromixer. Journal of Applied Fluid
Mechanics 10(6): 1759-1772.
Abdollahi, A., Mohammed, H.A., Vanaki, S.M. & Sharma, R.N. 2018.
Numerical investigation of fluid flow and heat transfer of nanofluids in
microchannel with longitudinal fins. Ain Shams Engineering Journal 9(4):
3411-3418.
Adams, T.M., Dowling, M.F., Abdel-Khalik, S.I. & Jeter, S.M. 1999.
Applicability of traditional turbulent single-phase forced convection
correlations to non-circular microchannels. International Journal of Heat
and Mass Transfer 42: 4411-4415.
Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M. & Qureshi, Z.H. 1998. An
experimental investigation of single-phase forced convection in microchannels. International
Journal of Heat and Mass Transfer 41(6-7): 851-857.
Ahmed, M.A., Yusoff, M.Z., Ng, K.C. & Shuaib, N.H. 2015. Numerical and
experimental investigations on the heat transfer enhancement in corrugated
channels using SiO2-water nanofluid. Case Studies in Thermal
Engineering 6: 77-92.
Al-Zaidi, A.H., Mahmoud, M.M. & Karayiannis, T.G. 2019. Flow boiling of
HFE-7100 in microchannels: Experimental study and comparison with correlations. International Journal of Heat and Mass Transfer 140: 100-128.
Anbumeenakshi, C., Sunndhar, P.M., Sundaram, P.K. & Thansekhar, M.R.
2018. Experimental investigation of heat transfer study in rectangle type
straight and oblique finned microchannel heat sink with nanofluids. International
Research Journal of Engineering and Technology 5(12): 621-634.
Awad, M.M. & Muzychka, Y.S. 2010. Two-phase flow modeling in
microchannels and minichannels. Heat Transfer Engineering 31(13):
1023-1033.
Choi, S.B., Barron, R.F. & Warrington, R.O. 1991. Fluid flow and heat
transfer in microtubes. American Society of Mechanical Engineers, Dynamic
Systems and Control Division. United Kingdom: DSC Publications Ltd.
Coleman,
J.W. & Garimella, S. 2000. Two-phase flow regime transitions in
microchannel tubes: The effect of hydraulic diameter. Proc. ASME Heat Transfer
Division-2000 HTD 366-4: 71-83.
Dang, T., Tran, N. & Teng, J.T. 2012. Numerical and experimental
investigations on heat transfer phenomena of an aluminium microchannel heat
sink. Applied Mechanics and Materials 145: 129-133.
Duan, Z., Ma, H., He, B., Su, L. & Zhang, X. 2019. Pressure drop of
microchannel plate fin heat sinks. Micromachines 10(2): 2-18.
Garimella, S., Agarwal, A. & Killion, J.D. 2005. Condensation pressure
drop in circular microchannels. Heat Transfer Engineering 26(3): 28-35.
Garimella,
S., Killion, J.D. & Coleman, J.W. 2002. An experimentally validated model
for two-phase pressure drop in the intermittent flow regime for circular
microchannels. J. Fluids Eng. 124(1): 205-214.
Ghaedamini, H., Lee, P.S. & Teo, C.J. 2013. Developing forced
convection in converging-diverging microchannels. International Journal of
Heat and Mass Transfer 65: 491-499.
Ghasemi, S.E., Ranjbar, A.A. & Hosseini, M.J. 2017. Experimental and
numerical investigation of circular minichannel heat sinks with various
hydraulic diameter for electronic cooling application. Microelectronics
Reliability 73: 97-105.
Gu, X., Wen, J., Zhang, X., Wang, C. & Wang, S. 2019. Effect of tube
shape on the condensation patterns of R1234ze(E) in horizontal mini-channels. International Journal of Heat and Mass Transfer 131: 121-139.
Heyhat, M.M., Kowsary, F., Rashidi, A.M., Momenpour, M.H. & Amrollahi,
A. 2013. Experimental investigation of laminar convective heat transfer and
pressure drop of water-based Al2O3 nanofluids in fully
developed flow regime. Experimental Thermal and Fluid Science 44:
483-489.
Jusoh, M.F., Zawawi, M.A.M., Man, H.C. & Kamaruddin, S. 2013.
Performance of shallow tube well on groundwater irrigation in tropical lowland
rice cultivation area. Sains Malaysiana 48(2): 1101-1108.
Khan, M.N., Islam, M. & Hasan, M.M. 2011. Experimental approach to
study friction factor and temperature profiles of fluid flow in circular
microchannels. Journal of Mechanical Engineering Research 3(6): 209-217.
Khoshvaght-Aliabadi, M., Hormozi, F. & Zamzamian, A. 2014. Experimental
analysis of thermal-hydraulic performance of copper-water nanofluid flow in
different plate-fin channels. Experimental Thermal and Fluid Science 52:
248-258.
Liu, D. & Garimella, S.V. 2004. Investigation of liquid flow in
microchannels. Journal of Thermophysics and Heat Transfer 18(1): 65-72.
Mala,
G.M. & Li, D. 1999. Flow characteristics of water in microtubes. International
Journal of Heat and Fluid Flow 20(2): 142-148.
Marshall, S.D., Balasubramaniam, L., Arayanarakool, R., Li, B., Lee, P.S.
& Chen, P.C. 2017. Case studies in thermal engineering methods and
techniques of improving experimental testing for micro fluidic heat sinks. Case
Studies in Thermal Engineering 10: 227-233.
Matkovic, M., Cavallini, A., Del Col, D. & Rossetto, L. 2009.
Experimental study on condensation heat transfer inside a single circular
minichannel. International Journal of Heat and Mass Transfer 52(9-10):
2311-2323.
Mehmood, O.U., Mustapha, N., Shafie, S. & Hayat, T. 2014. Partial slip
effect on heat and mass transfer of MHD peristaltic transport in a porous
medium. Sains Malaysiana 43(7): 1109-1118.
Nayak, M.K., Shaw, S., Makinde, O.D. & Chamkha, A.J. 2018a. Effects of
homogenous-heterogeneous reactions on radiative NACl-CNP nanofluid flow past a
convectively heated vertical Riga plate. Journal of Nanofluids 7(4):
657-667.
Nayak, M.K., Shaw, S., Pandey, V.S. & Chamkha, A.J. 2018b. Combined
effects of slip and convective boundary condition on MHD 3D stretched flow of
nanofluid through porous media inspired by non-linear thermal radiation. Indian Journal of Physics 92: 1017-1028.
Ranjith Kumar, V., Balasubramanian, K., Kiran Kumar, K., Tiwari, N. &
Bhatia, K. 2019. Numerical investigation of fluid flow and heat transfer
characteristics in novel circular wavy microchannel. Proceedings of the
Institution of Mechanical Engineers, Part E: Journal of Process Mechanical
Engineering 233(5): 954-966.
Rehman, D., Morini, G.L. & Hong, C. 2019. A comparison of data
reduction methods for average friction factor calculation of adiabatic gas
flows in microchannels. Micromachines 10(2): 2-18.
Shah, M.M. 2016. A correlation for heat transfer during condensation in
horizontal mini/micro channels. International Journal of Refrigeration
Volume 64: 187-202.
Sharma, P. 2014. Forced convective heat transfer characteristics of water
through a minichannel at higher Reynolds number. International Journal for
Scientific Research and Development 1(11): 2533-2536.
Shaw, S., Motsa, S.S. & Sibanda, P. 2019. Nanofluid flow over three
different geometries under viscous dissipation and thermal radiation using the
local linearization method. Heat Transfer - Asian Research 48: 1-17.
Sohel, M.R., Saidur, R., Hassan, N.H., Elias, M.M., Khaleduzzaman, S.S.
& Mahbubul, I.M. 2013. Analysis of entropy generation using nanofluid flow
through the circular microchannel and minichannel heat sink. International
Communications in Heat and Mass Transfer 46: 85-91.
Tiwari, N. & Moharana, M.K. 2018. Two-phase flow conjugate heat
transfer in wavy microchannel. ASME 2018 16th International Conference on
Nanochannels, Microchannels, and Minichannels.
Toninelli, P., Bortolin, S., Azzolin, M. & Del Col, D. 2019. Effects of
geometry and fluid properties during condensation in minichannels: Experiments
and simulations. Heat and Mass Transfer 55(1): 41-57.
Tripathi, D., Jhorar, R., Bég, O.A. & Shaw, S. 2018. Electroosmosis
modulated peristaltic biorheological flow through an asymmetric microchannel:
Mathematical model. Meccanica 53: 2079-2090.
Tuckerman, D.B. & Pease, R.F.W. 1981. High-performance heat sinking for
VLSI. IEEE Electron Device Letters 2(5): 126-129.
Uysal, C., Arslan, K. & Kurt, H. 2016. A numerical analysis of fluid
flow and heat transfer characteristics of ZnO-ethylene glycol nanofluid in
rectangular microchannels. Strojniški vestnik-Journal of Mechanical
Engineering 62(10): 603-613.
Yu, D. 1995. An experimental and theoretical investigation of fluid flow
and heat transfer in microtubes. ASME/JSME Thermal Engineering Conference 7(1): 11-16.
Zhang, J., Li, W. & Sherif, S.A. 2016. A numerical study of
condensation heat transfer and pressure drop in horizontal round and flattened
minichannels. International Journal of Thermal Sciences 106: 80-93.
Zhang, M. & Webb, R.L. 2001. Correlation of two-phase friction for
refrigerants in small-diameter tubes. Experimental Thermal and Fluid Science 25(3-4): 131-139.
*Corresponding author; email: a.almaneeea@mu.edu.sa
|