Sains Malaysiana 49(10)(2020): 2599-2608

http://dx.doi.org/10.17576/jsm-2020-4910-25

 

Experimental and Numerical Investigation of Fluid Flow and Heat Transfer in Circular Micro-Channel

(Penyelidikan Uji Kaji dan Berangka bagi Aliran Bendalir dan Pemindahan Haba dalam Mikro-Saluran Membulat)

 

ABDULMAJEED ALMANEEA*

 

Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia

 

Received: 28 October 2019/Accepted: 1 May 2020

 

ABSTRACT

Nowadays, there is a large demand for many electronic devices such as the laptop, and cell phone. The heat generated by such electronic component increases due to continuous functioning. Implementing microchannel could be a good solution despite the heat from microminiature refrigerators, microelectronics, micro heat pipe spreader, fuel processing biomedical, and aerospace. Therefore, several investigations have been done to improve the performance of such continuous operating electronic devices by dissipating heat with the use of microchannels. In this study, an experimental and numerical investigation is done for the circular microchannel having the hydraulic diameter of 253 µm and 63 mm in length under the condition of constant wall temperature by submerging the microchannels in the oil at constant temperature and water is forced to pass through total 5 microchannels. Experimental conducted for various flow rates shows that the microchannel has a significant impact on the heat transfer rate for the considered flow rate. Numerical results through COMSOL 5.1 software show good agreement with the experimental results. It is observed that the heat transfer coefficient increases with the Reynolds number whereas friction factor decreases with Reynolds number. Based on numerical and experimental results, empirical correlations for friction factor and Nusselt number are suggested to provides a reasonable estimate of heat transfer in the microchannel.

 

Keywords: Friction factor; heat transfer; microchannels; Nusselt number; Reynolds number

 

ABSTRAK

Pada masa ini terdapat banyak permintaan barang peranti elektronik seperti komputer riba dan telefon bimbit. Haba yang dihasilkan oleh komponen elektronik akan meningkat dengan penggunaan secara berterusan. Penggunaan mikrosaluran boleh menjadi penyelesaian yang baik di sebalik haba yang terhasil daripada peti sejuk mikro, mikroelektronik, penyebar paip haba mikro, bioperubatan pemprosesan bahan bakar dan aeroangkasa. Oleh itu, beberapa penyelidikan telah dilakukan untuk meningkatkan prestasi peranti elektronik yang beroperasi secara berterusan melalui pembuangan haba dengan penggunaan mikrosaluran. Dalam kajian ini, penyelidikan secara uji kaji dan berangka telah dijalankan untuk mikrosaluran bulat yang berdiameter 253 µm dan panjang 63 mm di bawah keadaan suhu dinding tetap dengan merendam mikrosaluran dalam minyak pada suhu tetap dan air dipaksa melalui keseluruhan 5 mikrosaluran secara keseluruhan. Uji kaji dijalankan dalam kadar aliran yang berbeza dan ia menunjukkan bahawa mikrosaluran memberi kesan ketara terhadap kadar pemindahan haba untuk kadar aliran yang terpilih. Keputusan berangka menggunakan perisian COMSOL 5.1 menunjukkan perbandingan yang baik dengan keputusan uji kaji. Pemerhatian kajian menunjukkan bahawa pekali pemindahan haba meningkat dengan nombor Reynolds manakala faktor geseran menurun dengan nombor Reynolds. Berdasarkan keputusan berangka dan uji kaji, korelasi empirik untuk faktor geseran dan nombor Nusselt dapat menyarankan anggaran yang bersesuaian dengan pemindahan haba dalam saluran mikro.

 

Kata kunci: Faktor geseran; nombor Nusselt; nombor Reynolds; pemindahan haba; saluran mikro

 

REFERENCES

Ababaei, A., Arani, A.A. & Aghaei, A. 2017. Numerical investigation of forced convection of nanofluid flow in microchannels: Effect of adding micromixer. Journal of Applied Fluid Mechanics 10(6): 1759-1772.

Abdollahi, A., Mohammed, H.A., Vanaki, S.M. & Sharma, R.N. 2018. Numerical investigation of fluid flow and heat transfer of nanofluids in microchannel with longitudinal fins. Ain Shams Engineering Journal 9(4): 3411-3418.

Adams, T.M., Dowling, M.F., Abdel-Khalik, S.I. & Jeter, S.M. 1999. Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels. International Journal of Heat and Mass Transfer 42: 4411-4415.

Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M. & Qureshi, Z.H. 1998. An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer 41(6-7): 851-857.

Ahmed, M.A., Yusoff, M.Z., Ng, K.C. & Shuaib, N.H. 2015. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2-water nanofluid. Case Studies in Thermal Engineering 6: 77-92.

Al-Zaidi, A.H., Mahmoud, M.M. & Karayiannis, T.G. 2019. Flow boiling of HFE-7100 in microchannels: Experimental study and comparison with correlations. International Journal of Heat and Mass Transfer 140: 100-128.

Anbumeenakshi, C., Sunndhar, P.M., Sundaram, P.K. & Thansekhar, M.R. 2018. Experimental investigation of heat transfer study in rectangle type straight and oblique finned microchannel heat sink with nanofluids. International Research Journal of Engineering and Technology 5(12): 621-634.

Awad, M.M. & Muzychka, Y.S. 2010. Two-phase flow modeling in microchannels and minichannels. Heat Transfer Engineering 31(13): 1023-1033.

Choi, S.B., Barron, R.F. & Warrington, R.O. 1991. Fluid flow and heat transfer in microtubes. American Society of Mechanical Engineers, Dynamic Systems and Control Division. United Kingdom: DSC Publications Ltd.

Coleman, J.W. & Garimella, S. 2000. Two-phase flow regime transitions in microchannel tubes: The effect of hydraulic diameter. Proc. ASME Heat Transfer Division-2000 HTD 366-4: 71-83.

Dang, T., Tran, N. & Teng, J.T. 2012. Numerical and experimental investigations on heat transfer phenomena of an aluminium microchannel heat sink. Applied Mechanics and Materials 145: 129-133.

Duan, Z., Ma, H., He, B., Su, L. & Zhang, X. 2019. Pressure drop of microchannel plate fin heat sinks. Micromachines 10(2): 2-18.

Garimella, S., Agarwal, A. & Killion, J.D. 2005. Condensation pressure drop in circular microchannels. Heat Transfer Engineering 26(3): 28-35.

Garimella, S., Killion, J.D. & Coleman, J.W. 2002. An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels. J. Fluids Eng. 124(1): 205-214.

Ghaedamini, H., Lee, P.S. & Teo, C.J. 2013. Developing forced convection in converging-diverging microchannels. International Journal of Heat and Mass Transfer 65: 491-499.

Ghasemi, S.E., Ranjbar, A.A. & Hosseini, M.J. 2017. Experimental and numerical investigation of circular minichannel heat sinks with various hydraulic diameter for electronic cooling application. Microelectronics Reliability 73: 97-105.

Gu, X., Wen, J., Zhang, X., Wang, C. & Wang, S. 2019. Effect of tube shape on the condensation patterns of R1234ze(E) in horizontal mini-channels. International Journal of Heat and Mass Transfer 131: 121-139.

Heyhat, M.M., Kowsary, F., Rashidi, A.M., Momenpour, M.H. & Amrollahi, A. 2013. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Experimental Thermal and Fluid Science 44: 483-489.

Jusoh, M.F., Zawawi, M.A.M., Man, H.C. & Kamaruddin, S. 2013. Performance of shallow tube well on groundwater irrigation in tropical lowland rice cultivation area. Sains Malaysiana 48(2): 1101-1108.

Khan, M.N., Islam, M. & Hasan, M.M. 2011. Experimental approach to study friction factor and temperature profiles of fluid flow in circular microchannels. Journal of Mechanical Engineering Research 3(6): 209-217.

Khoshvaght-Aliabadi, M., Hormozi, F. & Zamzamian, A. 2014. Experimental analysis of thermal-hydraulic performance of copper-water nanofluid flow in different plate-fin channels. Experimental Thermal and Fluid Science 52: 248-258.

Liu, D. & Garimella, S.V. 2004. Investigation of liquid flow in microchannels. Journal of Thermophysics and Heat Transfer 18(1): 65-72.

Mala, G.M. & Li, D. 1999. Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow 20(2): 142-148.

Marshall, S.D., Balasubramaniam, L., Arayanarakool, R., Li, B., Lee, P.S. & Chen, P.C. 2017. Case studies in thermal engineering methods and techniques of improving experimental testing for micro fluidic heat sinks. Case Studies in Thermal Engineering 10: 227-233.

Matkovic, M., Cavallini, A., Del Col, D. & Rossetto, L. 2009. Experimental study on condensation heat transfer inside a single circular minichannel. International Journal of Heat and Mass Transfer 52(9-10): 2311-2323.

Mehmood, O.U., Mustapha, N., Shafie, S. & Hayat, T. 2014. Partial slip effect on heat and mass transfer of MHD peristaltic transport in a porous medium. Sains Malaysiana 43(7): 1109-1118.

Nayak, M.K., Shaw, S., Makinde, O.D. & Chamkha, A.J. 2018a. Effects of homogenous-heterogeneous reactions on radiative NACl-CNP nanofluid flow past a convectively heated vertical Riga plate. Journal of Nanofluids 7(4): 657-667.

Nayak, M.K., Shaw, S., Pandey, V.S. & Chamkha, A.J. 2018b. Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian Journal of Physics 92: 1017-1028.

Ranjith Kumar, V., Balasubramanian, K., Kiran Kumar, K., Tiwari, N. & Bhatia, K. 2019. Numerical investigation of fluid flow and heat transfer characteristics in novel circular wavy microchannel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233(5): 954-966.

Rehman, D., Morini, G.L. & Hong, C. 2019. A comparison of data reduction methods for average friction factor calculation of adiabatic gas flows in microchannels. Micromachines 10(2): 2-18.

Shah, M.M. 2016. A correlation for heat transfer during condensation in horizontal mini/micro channels. International Journal of Refrigeration Volume 64: 187-202.

Sharma, P. 2014. Forced convective heat transfer characteristics of water through a minichannel at higher Reynolds number. International Journal for Scientific Research and Development 1(11): 2533-2536.

Shaw, S., Motsa, S.S. & Sibanda, P. 2019. Nanofluid flow over three different geometries under viscous dissipation and thermal radiation using the local linearization method. Heat Transfer - Asian Research 48: 1-17.

Sohel, M.R., Saidur, R., Hassan, N.H., Elias, M.M., Khaleduzzaman, S.S. & Mahbubul, I.M. 2013. Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink. International Communications in Heat and Mass Transfer 46: 85-91.

Tiwari, N. & Moharana, M.K. 2018. Two-phase flow conjugate heat transfer in wavy microchannel. ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels.

Toninelli, P., Bortolin, S., Azzolin, M. & Del Col, D. 2019. Effects of geometry and fluid properties during condensation in minichannels: Experiments and simulations. Heat and Mass Transfer 55(1): 41-57.

Tripathi, D., Jhorar, R., Bég, O.A. & Shaw, S. 2018. Electroosmosis modulated peristaltic biorheological flow through an asymmetric microchannel: Mathematical model. Meccanica 53: 2079-2090.

Tuckerman, D.B. & Pease, R.F.W. 1981. High-performance heat sinking for VLSI. IEEE Electron Device Letters 2(5): 126-129.

Uysal, C., Arslan, K. & Kurt, H. 2016. A numerical analysis of fluid flow and heat transfer characteristics of ZnO-ethylene glycol nanofluid in rectangular microchannels. Strojniški vestnik-Journal of Mechanical Engineering 62(10): 603-613.

Yu, D. 1995. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. ASME/JSME Thermal Engineering Conference 7(1): 11-16.

Zhang, J., Li, W. & Sherif, S.A. 2016. A numerical study of condensation heat transfer and pressure drop in horizontal round and flattened minichannels. International Journal of Thermal Sciences 106: 80-93.

Zhang, M. & Webb, R.L. 2001. Correlation of two-phase friction for refrigerants in small-diameter tubes. Experimental Thermal and Fluid Science 25(3-4): 131-139.

 

*Corresponding author; email: a.almaneeea@mu.edu.sa

 

   

 

previous