Sains Malaysiana 49(8)(2020): 1765-1771

http://dx.doi.org/10.17576/jsm-2020-4908-01

 

Accumulation and Phytoextraction Potential of Heavy Metals of Enhalus acoroides in The Coastal Waters of Lamongan, Java, Indonesia

(Penumpukan dan Potensi Fotopengekstrakan Logam Berat terhadap Enhalus acoroides di Perairan Pinggir Laut Lamongan, Jawa, Indonesia)

 

DEFRI YONA1,2*, SYARIFAH HIKMAH JULINDA SARI1,2 & RULI HIKMAH SAFITRI1

 

1Fisheries and Marine Science Faculty, Universitas Brawijaya, Jalan Veteran Malang, 65145, Indonesia

 

2Marine Research Exploration and Management (MEXMA) Research Group, Universitas Brawijaya, Jalan Veteran Malang, 65145, Indonesia

 

Received: 12 March 2019/Accepted: 7 April 2020

 

ABSTRACT

This study quantified the concentration of heavy metals Cd and Cu in Enhalus acoroides from shallow seagrass habitat in the northern coastal waters of Lamongan, Indonesia. The objective of this study was to determine the concentration of these metals in different parts of seagrass E. acoroides and to assess their biomonitoring potential of heavy metals pollution in coastal areas. Heavy metal contents in the sediments, roots and leaves of E. acoroides were determined by Flame Atomic Absorption Spectrometry from four sampling sites. The results showed that the concentrations of Cu were significantly higher than the concentrations of Cd in both sediments and seagrass tissues in all stations. The concentrations of Cu were found in slightly similar values in the sediments, roots and leaves. On the other hand, the concentrations of Cd were higher in the sediments than in the roots and leaves of E. acoroides. In addition, Bioconcentration Factor (BCF) of Cu in E. acoroides was two times higher than BCF of Cd (BCFCu = 1.09; BCFCd = 0.49). In contrast, Translocation Factor (TF) of Cu was lower than TF of Cd that was 0.65 and 1.05, respectively. According to BCF and TF values, E. acoroides can be considered to have the ability to perform phytoextraction process especially Cd because E. acoroides was able to restrict its absorption of Cd from the environment (BCF < 1) and once it is absorbed, the plant has the ability to transfer it to the other body parts (TF > 1).

 

Keywords: Coastal waters; heavy metal pollution; Indonesia; Lamongan; phytoextraction; seagrass

 

ABSTRAK

Kajian ini mengukur kepekatan logam berat Cd dan Cu dalam Enhalus acoroides dari habitat lamun yang cetek di perairan utara pinggir laut Lamongan, Indonesia. Objektif kajian ini adalah untuk menentukan kepekatan logam ini pada bahagian lamun E. acoroides yang berbeza dan untuk menilai potensi pembioawasannya terhadap pencemaran logam berat di perairan pinggir laut. Kandungan logam berat dalam sedimen, akar dan daun E. acoroides ditentukan melalui Spektrometri Nyala Penyerapan Atom daripada keempat-empat sampel. Hasil kajian menunjukkan bahawa kepekatan Cu adalah lebih tinggi daripada kepekatan Cd dalam kedua-dua sedimen dan tisu lamun dalam semua stesen. Kepekatan Cu adalah lebih kurang sama dalam sedimen, akar dan daun. Sebaliknya, kepekatan Cd adalah lebih tinggi pada sedimen berbanding akar dan daun E. acoroides. Tambahan lagi, Faktor Pembiopekatan (BCF) Cu dalam E. acoroides adalah dua kali ganda lebih tinggi daripada BCF Cd (BCFCu = 1.09; BCFCd = 0.49). Faktor Translokasi (TF) Cu pula adalah lebih rendah berbanding TF Cd, iaitu 0.65 dan 1.05. Menurut nilai BCF dan TF, E. acoroides boleh dianggap mempunyai kemampuan untuk melakukan proses fotopengekstrakan, terutamanya Cd kerana E. acoroides boleh menyekat penyerapan Cd daripada persekitaran (BCF < 1) dan setelah ia terserap, tumbuhan mempunyai keupayaan untuk memindahkannya ke bahagian yang lain (TF > 1).

 

Kata kunci: Fotopengekstrakan; Indonesia; Lamongan; lamun; pencemaran logam berat; perairan pinggir laut  

 

REFERENCES

Ali, M.M., Ali, M.L., Islam, Md.S. & Rahman, Md.Z. 2016. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management 5: 27-35.

Ambo-Rappe, R., Lajus, D.L. & Schreider, M.J. 2011. Heavy metal impact on growth and leaf asymmetry of seagrass, Halophila ovalis. Journal of Environmental, Chemical and Ecotoxicology 3(6): 149-159.

Bastami, K.D., Bagheri, H., Kheirabadi, V., Zaferani, G.G., Teymori, M.B., Hamzehpoor, A., Soltani, F., Haghparast, S., Harami, S.R.M., Ghorghani, N.F. & Ganji, S. 2014. Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin 81(1): 262-267.

Bonanno, G. & Di Martino, V. 2016. Seagrass Cymodocea nodosa as a trace element biomonitor: Bioaccumulation patterns and biomonitoring uses. Journal of Geochemical Exploration 169: 43-49.

Bonanno, G., Borg, J.A. & Di Martino, V. 2017. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Science of the Total Environment 576: 796-806.

Brown, D.R., Conrad, S., Akkerman, K., Fairfax, S., Fredericks, J., Hanrio, E., Sanders, L.M., Scott, E., Skillington, A., Tucker, J. & van Santen, M.L. 2016. Seagrass, mangrove and saltmarsh sedimentary carbon stocks in an urban estuary; Coffs Harbour, Australia. Regional Studies of Marine Science 8: 1-6.

Govers, L.L., Lamers, L.P.M., Bouma, T.J., Eygensteyn, J., de Brouwer, J.H.F., Hendriks, A.J., Huijbers, C.M. & van Katwijk, M.M. 2014. Seagrasses as indicators for coastal trace metal pollution: A global meta-analysis serving as a benchmark, and a Caribbean case study. Environmental Pollution 195: 210-217.

Hidayati, N., Juhaeti, T. & Syarif, F. 2009. Mercury and cyanide contaminations in gold mine environment and possible solution of cleaning up by using phytoextraction. HAYATI Journal of Bioscience 16(3): 88-94.

Hu, C., Yang, X., Gao, L., Zhang, P., Li, W., Dong, J., Li, C. & Zhang, Z. 2019. Comparative analysis of heavy metal accumulation and bioindication in three seagrass: Which species is more suitable as a bioindicator? Science of the Total Environment 669: 41-48.

Ismarti, I., Ramses, R., Amelia, F. & Suheryanto, S. 2017. Kandungan tembaga (Cu) dan timbal (Pb) pada lamun Enhalus accoroides dari Perairan Batam, Kepulauan Riau, Indonesia. Depik 6(1): 23-30.

Lin, H., Sun, T., Xue, S. & Jiang, X. 2016. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China. Science of The Total Environment 541: 435-443.

Lin, Y.C., Chang-Chien, G.P., Chiang, P.C., Chen, W.H. & Lin, Y.C. 2013. Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Marine Pollution Bulletin 76(1-2): 266-275.

Llagostera, I., Perez, M. & Romero, J. 2011. Trace metal content in the seagrass Cymodocea nodosa: Differential accumulation in plant organs. Aquabotic Botany 95(2): 124-128.

Nguyen, X.V., Tran, M.H. & Papenbrock, J. 2017. Different organs of Enhalus acoroides (Hydrocharitaceae) can serve as specific bioindicators for sediment contaminated with different heavy metals. South African Journal of Botany 113: 389-395.

Ooi, J.L.S., Kendrick, G.A., Van Niel, K.P. & Affendi, Y.A. 2011. Knowledge gaps in tropical Southeast Asian seagrass systems. Estuarine Coastal and Shelf Science 92(1): 118-131.

Riosmena-Rodríguez, R., Talavera-Sáenz, A., Acosta-Vargas, B. & Gardner, S.C. 2010. Heavy metals dynamics in seaweeds and seagrasses in Bahía Magdalena, BCS, México. México Journal of Applied Phycology 22(3): 283-291.

Rosalina, R., Herawati, E.Y., Musa, M., Sofarini, D., Amin, M. & Risjani, Y. 2019. Lead accumulation and its histological impact on Cymodecea serrulata seagrass in the laboratory. Sains Malaysiana 48(4): 813-822.

Saher, N.U. & Siddiqui, A.S. 2016. Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: Multiple pollution indices approach. Marine Pollution Bulletin 105(1): 403-410.

Sari, S.H., Harlyan, L. & Yona, D. 2018. Potential mangrove species in Porong River Estuary as inhibiting agent of heavy metal (Pb, Cu and Zn) pollution. Pertanika Journal of Tropical Agricultural Science 41: 271-286.

Schlacher-Hoenlinger, M.A. & Schlacher, T.A. 1998a. Differential accumulation patterns of heavy metals among the dominant macrophytes of a Mediterranean seagrass meadow. Chemosphere 37(8): 1511-1519.

Schlacher-Hoenlinger, M.A. & Schlacher, T.A. 1998b. Accumulation, contamination, and seasonal variability of trace metals in the coastal zone - patterns in a seagrass meadow from the Mediterranean. Marine Biology 131(3): 401-410.

Sidi, N., Aris, A.Z., Mohamat Yusuff, F., Looi, L.J. & Mokhtar, N.F. 2018. Tape seagrass (Enhalus acoroides) as a bioindicator of trace metal contamination in Merambong shoal, Johor Strait, Malaysia. Marine Pollution Bulletin 126: 113-118.

Sugiyanto, R.A.N., Yona, D. & Kasitowati, R.D. 2016. Analisis akumulasi logam berat (Pb) dan Kadmium (Cd) pada lamun Enhalus acoroides sebagai agen fitoremediasi di Pantai Paciran, Lamongan. Seminar Nasional Perikanan dan Kelautan VI Tahun 2016. Malang: Brawijaya University.

Suwandana, E., Kawamura, K. & Soeyanto, E. 2011. Assessment of the heavy metals and nutrients status in the seawater, sediment and seagrass in Banten Bay, Indonesia and their distributional patterns. Journal of Fisheries International 6(1): 18-25.

Thangaradjou, T., Raja, S., Subhashini, P., Nobi, E.P. & Dilipan, E. 2013. Heavy metal enrichment in the seagrasses of Lakshadweep group of islands - a multivariate statistical analysis. Environmental Monitoring Assessment 185(1): 673-685.

Thangaradjou, T., Nobi, E.P., Dilipan, E., Sivakumar, K. & Susila, S. 2010. Heavy metal enrichment in seagrasses of Andaman Islands and its implication to the health of the coastal ecosystem. Indian Journal of Marine Science 39: 85-91.

Timofeeva, S.S., Ulrikh, D.V. & Timofeev, S.S. 2017. Phytomining perspectives in rehabilitation of mining and industrial areas of South Ural. Earth and Environmental Science 66(1): 1-5.

van der Ent, A., Baker, A.J., Reeves, R.D., Chaney, R.L., Anderson, C.W., Meech, J.A., Erskine, P.D., Simonnot, M.O., Vaughan, J., Morel, J.L. & Echevarria, G. 2020. Agromining: farming for metals in future? Environmental Science and Technology 49: 4773-4780.

Yoon, J., Cao, X., Zhou, Q. & Ma, L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Floride site. Science of The Total Environment 368(2-3): 456-464.

Zakhama-Sraieb, R., Sghaier, Y.R., Hmida, A.B., Cappai, G., Carucci, A. & Charfi-Cheikhrouha, F. 2015. Variation along the year of trace metal levels in the compartments of the seagrass Posidonia oceanica in Port El Kantaoui, Tunisia. Environmenat Science and Pollution Research 23(2): 1681-1690.

 

*Corresponding author; email: defri.yona@ub.ac.id