Sains Malaysiana 49(8)(2020): 1773-1785

http://dx.doi.org/10.17576/jsm-2020-4908-02

 

Quantitative Analysis of NaCl, NaOH, and β-phenylethylamine in Water using Ultraviolet Spectroscopy coupled with Partial Least Squares and Net Analyte Preprocessing

(Analisis Kuantitatif NaCl, NaOH dan β-feniletilamina dalam Air menggunakan Spektroskopi Ultraungu Berganding dengan Kuasa Dua Terkecil Separa dan Prapemprosesan Analit Net)

 

XIAOJUN TANG, ANGXIN TONG*, FENG ZHANG & BIN WANG

 

State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi 710049, China

 

Received: 29 November 2019/Accepted: 1 April 2020

 

ABSTRACT

During the quantitative analysis of NaCl, NaOH, and β-phenylethylamine (PEA) in water samples, the highly overlapped spectra of NaCl, NaOH, and PEA resulted in poor concentration prediction. Meanwhile, the original spectral data of the natural water usually contain noise and interference spectra which will definitely affect the prediction accuracy. Hence, a new quantitative analysis method, which was based on ultraviolet (UV) spectroscopy coupled with partial least squares (PLS) and net analyte preprocessing (NAP), was developed. Firstly, the PLS regression models of the calibration set were constructed by using 15 single component samples, 9 binary component samples and 25 ternary component samples. In addition, the independent test set was built up based on 34 samples to validate the prediction performance of the PLS regression models. The relative errors of prediction (REP) were both less than 3.1% for NaCl, NaOH, and PEA. And the correlation coefficients (Rpred2) of the PLS-1 and PLS-2 models were both not less than 0.98 for NaCl, NaOH, and PEA. Finally, the PLS models coupled with NAP algorithm were successfully used to make the quantitative determination of NaCl, NaOH, and PEA added into the natural water, and the mean recovery rates of NaCl, NaOH, and PEA were satisfactory (95-102%). Therefore, UV spectroscopy coupled with PLS models and NAP algorithm can be considered as an effective method to determine the concentration of NaCl, NaOH and PEA in the natural water.

 

Keywords: Interference spectra; natural water; net analyte preprocessing; partial least squares; ultraviolet spectroscopy

 

ABSTRAK

Semasa analisis kuantitatif NaCl, NaOH dan β-feniletilamina (PEA) dalam sampel air, spektrum NaCl, NaOH dan PEA yang sangat bertindih mengakibatkan ramalan kepekatan yang buruk. Sementara itu, data spektrum asal air semula jadi biasanya mengandungi spektrum hingar dan gangguan yang pasti akan mempengaruhi ketepatan ramalan. Oleh itu, kaedah analisis kuantitatif baru berdasarkan spektroskopi ultraungu (UV) yang berganding dengan kuasa dua terkecil separa (PLS) dan prapemprosesan analit net (NAP) telah dibentuk. Yang pertama, model regresi PLS daripada set penentukuran dihasilkan dengan menggunakan 15 sampel komponen tunggal, 9 sampel komponen dedua dan 25 sampel komponen terner. Tambahan pula, set ujian bersandar dibina berdasarkan 34 sampel untuk mengesahkan prestasi ramalan model regresi PLS. Ralat ramalan relatif (REP) adalah kurang daripada 3.1% bagi NaCl, NaOH dan PEA. Dan pekali korelasi(Rpred2) kedua-dua model PLS-1 dan PLS-2 tidak kurang daripada 0.98 bagi NaCl, NaOH dan PEA. Akhirnya, model PLS berganding dengan algoritma NAP berjaya digunakan untuk membuat penentuan kuantitatif NaCl, NaOH dan PEA yang ditambahkan ke dalam air semula jadi dan kadar pemulihan min NaCl, NaOH dan PEA adalah memuaskan (95-102%). Oleh itu, spektroskopi UV yang berganding dengan model PLS dan algoritma NAP dapat dianggap sebagai kaedah yang berkesan untuk menentukan kepekatan NaCl, NaOH dan PEA dalam air semula jadi.

 

Kata kunci: Air semula jadi; kuasa dua terkecil separa; prapemprosesan analit net; spektrum gangguan; spektroskopi ultraungu

 

REFERENCES

Carre, E., Perot, J., Jauzein, V., Lin, L.M. & Lopez-Ferber, M. 2017. Estimation of water quality by UV/Vis spectrometry in the framework of treated wastewater reuse. Water Science and Technology 76(3): 633-641.

Corredor-Santamaría, W., Torres-Tabares, A. & Velasco-Santamaría, Y.M. 2019. Biochemical and histological alterations in Aequidens metae (Pisces, Cichlidae) and Astyanax gr. bimaculatus (Pisces, Characidae) as indicators of river pollution. Science of The Total Environment 692: 1234-1241.         

Daniel, D., dos Santos, V.B., Vidal, D.T.R. & do Lago, C.L. 2015. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. Journal of Chromatography A 1416: 121-128.

Goicoechea, H.C. & Olivieri, A.C. 2001. A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study. Chemometrics and Intelligent Laboratory Systems 56(2): 73-81.

Guo, H.X., Huang, F.R., Li, Y.P., Fang, T., Zhu, S.Q. & Chen, Z.Q. 2016. Determination of proteins in human serum by near-infrared spectroscopy with partial least square analysis. Analytical Letters 49(18): 2964-2976.

Hassaninejad-Darzi, S.K. & Torkamanzadeh, M. 2016. Simultaneous UV-Vis spectrophotometric quantification of ternary basic dye mixtures by partial least squares and artificial neural networks. Water Science and Technology 74(10): 2497-2504.

Hegazy, M.A.M., Abbas, S.S. & Zaazaa, H.E. 2015. Resolution of overlapped quaternary spectral bands by net analyte signal based methods: An application to different combinations in tablets and capsules. Journal of Analytical Chemistry 70(4): 450-458.

Lee, S., Yoo, M. & Shin, D. 2015. The identification and quantification of biogenic amines in Korean turbid rice wine, Makgeolli by HPLC with mass spectrometry detection. LWT-Food Science and Technology 62(1): 350-356.

Li, J., Guan, R.F., Wei, X.M., Chen, J.C., Hu, Y.Q., Liu, D.H. & Ye, X.Q. 2018. Detection of ten biogenic amines in Chinese commercial soybean paste by HPLC. International Journal of Food Properties 21(1): 1344-1350.

Li, X.Z., Zhou, J., Tang, H., Sun, L., Cao, X.M. & Zhang, X.S. 2020. Rapid determination of total nitrogen in aquaculture water based on ultraviolet spectroscopy. Spectroscopy and Spectral Analysis 40(1): 195-201.

Liu, F., Du, L.H., Xu, W.Y., Wang, D.Y., Zhang, M.H., Zhu, Y.Z. & Xu, W.M. 2013. Production of tyramine by Enterococcus faecalis strains in water-boiled salted duck. Journal of Food Protection 76(5): 854-859.

Liu, X.H. & Wang, L.L. 2015. Use of multivariate calibration models based on UV-Vis spectra for seawater quality monitoring in Tianjin Bohai Bay, China. Water Science and Technology 71(10): 1444-1450.

Lu, Y.Z., Du, C.W., Yu, C.B. & Zhou, J.M. 2015. Determination of nitrogen in rapeseed by fourier transform infrared photoacoustic spectroscopy and independent component analysis. Analytical Letters 48(7): 1150-1162.

Mai, W., Zhang, J.F., Zhao, X.M., Li, Z. & Xu, Z.W. 2017. Partial least squares regression calibration of an ultraviolet-visible spectrophotometer for measurements of chemical oxygen demand in dye wastewater. Journal of Applied Spectroscopy 84(5): 804-810.

Moreira, A.M.D., de Oliveira, H.L., Allochio, J.F., Florez, D.H.A., Borges, M.M.C., Lacerda, V., Romao, W. & Borges, K.B. 2019. NBOMe compounds: An overview about analytical methodologies aiming their determination in biological matrices. TrAC-Trends in Analytical Chemistry 114: 260-277.

Moreno-Martin, G., Leon-Gonzalez, M.E. & Madrid, Y. 2018. Simultaneous determination of the size and concentration of AgNPs in water samples by UV-vis spectrophotometry and chemometrics tools. Talanta 188: 393-403.

Salameh, B.A., Al-Degs, Y.S., Abu Safieh, K.A. & AL-Zghool, A.W. 2020. Novel application of multivariate standard addition method based on net analyte signal for quantification of artificial sweeteners in complex food matrices. Journal of Food Measurement and Characterization 14(1): 78-87.

Samkova, E., Dadakova, E. & Pelikanova, T. 2013. Changes in biogenic amine and polyamine contents in smear-ripened cheeses during storage. European Food Research and Technology 237(3): 309-314.

Scavnicar, A., Rogelj, I., Kocar, D., Kose, S. & Pompe, M. 2018. Determination of biogenic amines in cheese by ion chromatography with tandem mass spectrometry detection. Journal of AOAC International 101(5): 1542-1547.

Shao, P., Wang, J., Zhang, T.T. & Sun, P.L. 2015. Determination of starch adulteration in Ganoderma lucidum polysaccharide by near infrared reflectance spectroscopy with partial least squares algorithm. Current Topics in Nutraceutical Research 13(4): 181-187.

Subedi, S. & Fox, T.R. 2016. Predicting Loblolly pine site index from soil properties using partial least-squares regression. Forest Science 62(4): 449-456.

Tasev, K., Ivanova-Petropulos, V. & Stefova, M. 2017 Ultra-performance liquid chromatography-triple quadruple mass spectrometry (UPLC-TQ/MS) for evaluation of biogenic amines in wine. Food Analytical Methods 10(12): 4038-4048.

Tyszka, A., Pikus, G., Dabrowa, K. & Jurczak, J. 2019. Late-stage functionalization of (R)-BINOL-based diazacoronands and their chiral recognition of alpha-phenylethylamine hydrochlorides. Journal of Organic Chemistry 84(10): 6502-6507.

Wang, L., Xiong, Q., Guo, C.H., Li, M.L. & Pu, X.M. 2017. Ultraviolet spectroscopy combined with chemometrics for simultaneous quantitative determination of 2,4,6-trinitrotoluene and its degraded products in environmental water sample. Chinese Journal of Analytical Chemistry 45(5): 754-761.

Wen, L.F., Zhang, N., Li, H.C., Huang, Q., Wu, X.R., Hao, X.Y., Wu, M.J., Ban, C.L. & Zhao, J.H. 2017. Ternary liquid-liquid equilibrium for mixtures of water plus (+/-)alpha-Phenylethylamine plus n-Hexane at T=298.2, 318.2, and 333.2 K. Journal of Chemical and Engineering Data 62(7): 1819-1824.

Xia, L. 2017. Analysis of partial least squares modeling and multi-collinearity ability. Agro Food Industry Hi-Tech 28(1): 885-889.

Yan, K., Yuan, Z.W., Goldberg, S., Gao, W., Ostermann, A., Xu, J.C., Zhang, F.S. & Elser, J. 2019. Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China's most eutrophicated lakes. Science of The Total Environment 689: 1336-1347.

Ye, S., Chen, X., Dong, D.M., Wang, J.J., Wang, X.Q. & Wang, F.Y. 2018. Rapid determination of water COD using laser-induced breakdown spectroscopy coupled with partial least-squares and random forest. Analytical Methods 10(40): 4879-4885.

Yu, L.M., Zhao, K.J., Wang, S.S., Wang, X. & Lu, B. 2018. Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome. World Journal of Gastroenterology 24(8): 894-904.

Zamora, R., Navarro, J.L. & Hidalgo, F.J. 2018. Structure-activity relationship (SAR) of phenolics for the inhibition of 2-phenylethylamine formation in model systems involving phenylalanine and the 13-hydroperoxide of linoleic acid. Journal of Agricultural and Food Chemistry 66(51): 13503-13512.

Zappi, A., Maini, L., Galimberti, G., Caliandro, R. & Melucci, D. 2019. Quantifying API polymorphs in formulations using X-ray powder diffraction and multivariate standard addition method combined with net analyte signal analysis. European Journal of Pharmaceutical Sciences 130: 36-43.

Zhou, Z., Li, Y., Zhang, Q., Shi, X.Y., Wu, Z.S. & Qiao, Y.J. 2016. Comparison of ensemble strategies in online NIR for monitoring the extraction process of pericarpium citri reticulatae based on different variable selections. Planta Medica 82(1-2): 154-162.

 

*Corresponding author; email: tongangxin@stu.xjtu.edu.cn

   

 

 

previous