Sains
Malaysiana 49(8)(2020):
1865-1874
http://dx.doi.org/10.17576/jsm-2020-4908-09
Effect of FGF-2 and PDGF-BB on a Co-Culture of Human
Gingival Fibroblasts and Umbilical Vein Endothelial Cells
(Kesan FGF-2 dan PDGF-BB ke atas Ko-Kultur Sel Fibroblas Gingiva dan Sel Endotelial Vena Umbilikal Manusia)
NASAR
UM MIN ALLAH1, ZURAIRAH BERAHIM1*,
AZLINA AHMAD1 & KANNAN THIRUMULU PONNURAJ1,2
1School of Dental Sciences, Universiti
Sains Malaysia, 16150, Kubang Kerian, Kelantan Darul Naim, Malaysia
2Human Genome Centre, School of Medical
Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan Darul Naim,
Malaysia
Received: 2 October 2019/Accepted: 27 March 2020
ABSTRACT
Gingival recession
can be treated by root coverage procedure with tissue graft. The ideal gingiva
graft should mimic the properties of the native gingiva. Gingival fibroblasts
are main cells that reside in human gingiva, while the endothelial cells are
the basis for blood vessel formation. The co-culture of these cells, will help
in better understanding of gingival tissue regeneration. This study was aimed
to determine the effects of fibroblast growth factor-2 (FGF-2) and
platelet-derived growth factor-BB (PDGF-BB) on a co-culture of human gingival
fibroblasts (HGFs) and human umbilical vein endothelial cells (HUVECs). In this in
vitro experimental study, the
medium for the establishment of monolayer and co-culture of these cells were
first optimised. Then, the optimal concentrations of these growth factors were
determined by assessing the cell viability using MTT assay. Next, to study the
stimulatory effect of these growth factors, both HGF and HUVECs were
co-cultured and gene expression analysis for fibroblast and angiogenic
biomarkers was assessed using Real-Time RT-PCR. Cell viability assay showed that the effect of FGF-2
on HGF was dose-dependent and was optimum at a concentration of 5 ng mL-1,
while that of PDGF-BB on HUVEC was optimum at a concentration of 20 ng mL-1.
The stimulatory effect of FGF-2 and PDGF-BB was further supported by the
Real-Time PCR results which showed that there is a significant expression of VIM, COL1A1, FN, CD31, VE-Cadherin, and vWFin the treatment group of both cells after
three days of co-culture experiment, compared to control group. This study
indicates a possible synergistic effect of FGF-2 and PDGF-BB growth factors in
a co-culture of HGF and HUVEC leading to proangiogenic
activity.
Keywords: Co-culture; FGF-2; HUVEC; PDGF-BB; tissue
engineering
ABSTRAK
Penyusutan gingiva boleh dirawat
menggunakan prosedur penutupan akar bersama geraf tisu. Geraf tisu gingiva yang
unggul mestilah hampir menyerupai tisu gingiva yang asli. Fibroblas gingiva
adalah sel utama yang terdapat dalam gingiva manusia, manakala sel endotelium
adalah asas untuk pembentukan salur darah. Ko-kultur sel-sel ini akan membantu
dalam pemahaman yang lebih baik mengenai pertumbuhan semula tisu gingiva.
Kajian ini bertujuan untuk menentukan kesan faktor pertumbuhan fibroblas
(FGF-2) dan faktor terbitan platlet (PDGF-BB) ke atas ko-kultur sel fibroblas
gingiva (HGFs) dan sel endotelium vena umbilikus manusia
(HUVECs). Di dalam uji kaji in vitro ini, media untuk memantapkan kultur sel
satu lapisan dan ko-kultur kedua-dua jenis sel tersebut dioptimumkan terlebih dahulu. Berikutan
itu kepekatan yang terbaik bagi kedua-dua faktor pertumbuhan ditentukan dengan
menilai kebolehidupan sel menggunakan ujian MTT. Seterusnya, untuk mengkaji
kesan perangsangan faktor pertumbuhan ini, kedua-dua HGFs dan HUVECs telah
menjalani ko-kultur dan analisis pengekspresan gen untuk biopenanda fibroblas dan angiogenik telah
dilakukan dengan masa nyata RT-PCR. Asai kebolehidupan sel menunjukkan bahawa kesan
FGF-2 ke atas HGF adalah mengikut dos dan optimum pada kepekatan 5 ng mL-1, manakala kesan PDGF-BB ke atas HUVEC adalah optimum pada kepekatan 20 ng
mL-1. Kesan rangsangan FGF-2 dan PDGF-BB turut disokong oleh keputusan masa nyata PCR yang menunjukkan
pengekspresan VIM, COL1A1, FN, CD31,
VE-Cadherin dan vWF yang signifikan antara kumpulan yang dirawat untuk kedua-dua
jenis sel selepas 3 hari menjalani ko-kultur berbanding kumpulan kawalan.
Kajian ini menunjukkan bahawa terdapat kemungkinan kesan sinergistik antara faktor
pertumbuhan FGF-2 dan PDGF-BB di dalam
ko-kultur sel HGF dan HUVEC yang mengarah kepada aktiviti proangiogenik.
Kata kunci: FGF-2; HUVEC;
kejuruteraan tisu; ko-kultur; PDGF-BB
REFERENCES
Albelda, S.M. & Buck, C.A. 1990. Integrins and
other cell adhesion molecules. FASEB J. 4(11) :2868-2880.
Bachetti,
T. & Morbidelli, L. 2000. Endothelial cells in culture: A model for studying vascular functions. Pharmacol. Res. 42(1): 9-19.
Battegay,
E.J., Rupp, J., Iruela-Arispe, L., Sage, E.H. & Pech, M. 1994. PDGF-BB
modulates endothelial proliferation and angiogenesis in vitro via PDGF
beta-receptors. J. Cell Biol. 125(4):
917-928.
Cao,
R., Brakenhielm, E., Pawliuk, R., Wariaro, D., Post, M.J., Wahlberg, E.,
Leboulch, P. & Cao, Y. 2003. Angiogenic synergism, vascular stability and
improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9(5): 604-613.
Cheung,
J.W., Jain, D., McCulloch, C.A. & Santerre, J.P. 2015. Pro-angiogenic
character of endothelial cells and gingival fibroblasts cocultures in perfused
degradable polyurethane scaffolds. Tissue
Eng. Part A 21(9-10): 1587-1599.
Choong,
C.S., Hutmacher, D.W. & Triffitt, J.T. 2006. Co-culture of bone marrow
fibroblasts and endothelial cells on modified polycaprolactone substrates for
enhanced potentials in bone tissue engineering. Tissue Eng. 12(9): 2521-2531.
Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C.,
Granja, P.L., Soares, R. & Guerreiro, S.G. 2015. Fibroblast-endothelial
partners for vascularization strategies in tissue engineering. Tissue Eng. Part A 21(5-6): 1055-1065.
Gallagher,
S.I. & Matthews, D.C. 2017. Acellular dermal matrix and subepithelial
connective tissue grafts for root coverage: A systematic review. J. Indian Soc. Periodontol. 21(6):
439-448.
Goncharov, N.V.,
Nadeev, A.D., Jenkins, R.O. & Avdonin, P.V. 2017. Markers and biomarkers of endothelium:
When something is rotten in the state. Oxid.
Med. Cell Longev.2017: Article ID. 9759735.
Jati, A.S., Furquim, L.Z. & Consolaro,
A. 2016. Gingival recession: Its
causes and types, and the importance of orthodontic treatment. Dental
Press J. Orthod. 21(3): 18-29.
Kang,
S.S., Gosselin, C., Ren, D. & Greisler, H.P. 1995. Selective stimulation of
endothelial cell proliferation with inhibition of smooth muscle cell
proliferation by fibroblast growth factor-1 plus heparin delivered from fibrin
glue suspensions. Surgery 118(2):
280-287.
Kolbe,
M., Xiang, Z., Dohle, E., Tonak, M., Kirkpatrick, C.J. & Fuchs, S. 2011.
Paracrine effects influenced by cell culture medium and consequences on
microvessel-like structures in cocultures of mesenchymal stem cells and
outgrowth endothelial cells. Tissue Eng. Part A 17(17-18): 2199-2212.
Li,
J., Wei, Y., Liu, K., Yuan, C., Tang, Y.J., Quan,
Q.L., Chen, P., Wang, W., Hu, H. & Yang,
L. 2010. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle
regeneration in rabbit hindlimb ischemia model. Microvasc. Res. 80(1): 10-17.
Manimegalai, A, Rao, S. & Ravindran, D. 2016. Fibronectin
in periodontal health and disease. J.
Orofac. Sci. 8(1): 12-15.
Marx,
M., Perlmutter, R.A. & Madri, J.A. 1994. Modulation of platelet-derived
growth factor receptor expression in microvascular endothelial cells during in
vitro angiogenesis. J. Clin. Invest. 93(1): 131-139.
Minardi, S., Pandolfi, L., Taraballi, F., Wang, X., De
Rosa, E., Mills, Z.D., Liu, X., Ferrari, M. & Tasciotti, E. 2017.
Enhancing vascularization through the controlled release of platelet-derived
growth factor-BB. ACS Appl. Mater.
Interfaces 9(17): 14566-14575.
Mohd
Nor, N.H., Berahim, Z., Azlina, A., Mokhtar, K.I. & Kannan, T.P. 2017.
Identification and characterization of intraoral and dermal fibroblasts
revisited. Curr. Stem Cell Res. Ther. 12(8): 675-681.
Moraschini, V. & Barboza Edos, S. 2016. Use of platelet-rich fibrin membrane in the
treatment of gingival recession: A systematic review and meta-analysis. J. Periodontol. 87(3): 281-290.
Nishimura,
F. &Terranova, V.P. 1996. Comparative study of the chemotactic responses of
periodontal ligament cells and gingival fibroblasts to polypeptide growth
factors. J. Dent. Res. 75(4):
986-992.
Nissen,
L.J., Cao, R., Hedlund, E.M., Wang, Z., Zhao, X., Wetterskog, D., Funa, K., Brakenhielm,
E. & Cao, Y. 2007. Angiogenic factors FGF2 and PDGF-BB synergistically
promote murine tumor neovascularization and metastasis. J.
Clin. Invest. 117(10): 2766-2777.
Palmon,
A., Roos, H., Edel, J., Zax, B., Savion, N., Grosskop, A. & Pitaru, S.
2000. Inverse dose- and time-dependent effect of basic fibroblast growth factor
on the gene expression of collagen type I and matrix metalloproteinase-1 by
periodontal ligament cells in culture. J.
Periodontol. 71(6): 974-980.
Pfaffl,
M.W. 2001. A new mathematical model for relative quantification in real-time
RT-PCR. Nucleic Acids Res. 29(9): e45.
Plumb, J.A., Milroy, R. & Kaye, S.B. 1989. Effects
of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide-formazan absorption on chemosensitivity determined by a novel
tetrazolium-based assay. Cancer
Res. 49(16): 4435-4440.
Renaud, J. & Martinoli, M.G. 2016. Development
of an insert co-culture system of two cellular types in the absence of
cell-cell contact. J. Vis. Exp.doi: 10.3791/54356.
Shimizu,
T., Kinugawa, K., Yao, A.,
Sugishita, Y., Sugishita, K., Harada, K., Matsui, H., Kohmoto, O., Serizawa, T.
& Takahashi, T. 1999. Platelet-derived growth factor induces cellular
growth in cultured chick ventricular myocytes 1. Cardiovasc. Res. 41(3): 641-653.
Shkreta,
M., Atanasovska-Stojanovska, A., Dollaku, B. & Belazelkoska, Z. 2018.
Exploring the gingival recession surgical treatment modalities: A literature
review. Open Access Maced. J. Med.
Sci. 6(4): 698-708.
Song,
H.G., Rumma, R.T., Ozaki, C.K., Edelman, E.R. & Chen, C.S. 2018. Vascular
tissue engineering: Progress,
challenges, and clinical promise. Cell
Stem Cell 22(3): 340-354.
Sufen,
G., Xianghong, Y., Yongxia, C. & Qian, P. 2011. bFGF and PDGF-BB have a
synergistic effect on the proliferation, migration and VEGF release of
endothelial progenitor cells. Cell Biol.
Int. 35(5): 545-551.
Tanimoto,
K., Ohkuma, S., Tanne, Y., Kunimatsu, R., Hirose, N., Mitsuyoshi, T., Yoshimi,
Y., Su, S. & Tanne, K. 2013. Effects of bFGF on the modulation of apoptosis
in gingival fibroblasts with different host ages. Int. J. Dent. 2013: Article ID. 619580.
Traore,
M.A. & George, S.C. 2017. Tissue engineering the vascular tree. Tissue Eng. Part B Rev. 23(6): 505-514.
Um
Min Allah, N., Berahim, Z., Ahmad, A. & Kannan, T.P. 2017. Biological interaction between human gingival
fibroblasts and vascular endothelial cells for angiogenesis: A co-culture
perspective. Tissue Eng. Regen. Med. 14(5): 495-505.
Walters,
J.D., Nakkula, R.J. & Maney, P. 2005. Modulation of gingival fibroblast
minocycline accumulation by biological mediators. J. Dent. Res. 84(4):
320-323.
Zetter, B.R. & Antoniades, H.N. 1979. Stimulation of human vascular endothelial
cell growth by a platelet-derived growth factor and thrombin. J. Supramol. Struct. 11(3): 361-370.
Zuhr, O., Baumer, D. & Hurzeler, M. 2014.
The addition of soft tissue replacement grafts in plastic periodontal and
implant surgery: Critical elements in design and execution. J. Clin. Periodontol. 41(Suppl 15):
S123-S142.
*Corresponding
author; email: zurairah@usm.my
|