Sains Malaysiana 49(8)(2020): 1875-1890
http://dx.doi.org/10.17576/jsm-2020-4908-10
Opto-Electrical Investigation of
Zn Metal-Doped Cds and Their Application in Soft Lithographic Technique
(Kajian Opto-Elektrik ke
atas Zn Logam-terdop Cd dan Aplikasinya dalam Teknik Litografi Lembut)
GULALAI HUSSAIN1, UZMA JABEEN1*, IRFAN HAFEEZ2,
M NAJAM KHAN MALGHANI3, AYESHA MUSHTAQ1*, SABEENA RIZWAN1,
FARRUKH BASHIR1, FARIDA BEHLIL1, M AAMIR RAZA2 & SHAISTA ANJUM4
1Faculty of Basic Sciences, SBK Women’s University
Quetta, 87300, Pakistan
2Pakistan Council of Scientific and Industrial
Research, Pakistan
3Faculty of Engineering and Architecture, Takatu
campus BUITEMS Quetta, Pakistan
4Faculty of Life Sciences, University of
Balochistan, Quetta, Pakistan
Received:
12 October 2019/Accepted: 26 March 2020
ABSTRACT
Un-doped
CdS and Zn metal-doped CdS (0.1-0.5 M) were synthesized by chemical
precipitation method. Properties like optical band gap and conductivity were
determined by different characterization techniques. UV-Visible spectroscopy
was applied to estimate the band gap where it showed a significant blue shift
due to quantum confinement effect. Size determined by scanning electron
microscopy (SEM) was found to be in nanorange from 41 to 60 nm for both
un-doped and metal doped CdS nanocrystals. EDAX confirmed the doping by showing
peak for Zn. XRD (X-ray diffraction) showed the lattice structure to be cubic
for the synthesized nanoparticles and conductivity for un-doped CdS was 7.69E-6 Ω-1m-1 where it changes to 9.25E-6 Ω-1m-1 and 7.98E-6 Ω-1m-1 for 0.2 M and 0.5 M Zn-doped
CdS, respectively. In order to obtain good results, nanocrystals having highest
conductivity are used in soft lithographic technique. Here µTM (micro
transfer-molding) was followed for patterning with PDMS (poly-(dimethylsiloxane)) mold and silicon
substrate for better results.
Keywords: Band gap; blue shift; conductivity; lithography; Zn dopant
ABSTRAK
CdS
yang tidak terdop dan Zn logam-terdop (0.1-0.5M) disintesis dengan kaedah
pemendakan kimia. Sifat seperti jurang jalur optik dan kekonduksian ditentukan
oleh teknik pencirian yang berbeza. Spektroskopi Terlihat UV diterapkan untuk
menganggarkan jurang jalur yang menunjukkan peralihan warna biru yang ketara
kerana kesan pengurungan kuantum. Ukuran yang ditentukan oleh mikroskopi
elektron pengimbasan (SEM) didapati berada dalam jarak nano dari 41 hingga 60
nm untuk kristal nano CdS yang tidak dilekatkan dan logam. EDAX mengesahkan
pendopan dengan menunjukkan puncak untuk Zn. XRD (difraksi sinar-X) menunjukkan
struktur kisi menjadi kubik bagi zarah nanopartesis yang disintesis dan
kekonduksian untuk CdS tanpa pendopan adalah 7.69E-6 Ω-1m-1 dan ia berubah menjadi 9.25E-6 Ω-1m-1 dan 7.98E-6
Ω-1m-1 masing-masing untuk 0.2 M dan 0.5 M Zn-terdop
CdS. Untuk memperoleh hasil yang baik, kristal nano yang mempunyai kekonduksian
tertinggi digunakan dalam teknik litografi lembut. Di sini µTM (acuan
pemindahan mikro) dilakukan untuk membuat corak dengan substrat acuan dan
silikon PDMS (poli- (dimetilsiloksana)) untuk hasil yang lebih baik.
Kata
kunci: Jurang jalur; kekonduksian; litografi; peralihan biru; Zn dopan
REFERENCES
Brus,
L. & Jocp, T. 1984. Electron-electron and electron‐hole interactions
in small semiconductor crystallites: The size dependence of the lowest excited
electronic state. The Journal of Chemistry Physics 80: 4403-4409.
Erwin, S.C., Zu, L.,
Haftel, M.I., Efros, A.L., Kennedy, T.A. & Norris, D.J. 2005. Doping
semiconductor nanocrystals. Nature 436(7047): 91-94.
Huse, V.R., Mote, V.D.
& Dole, B.N. 2013. The crystallographic and optical studies on cobalt doped
CdS nanoparticles. World Journal of Condensed Matter Physics 3(1):
46-49.
Irem, F.E. & Boz, I. 2017. Synthesis and
characterization of metal-doped (Ni, Co, Ce, Sb) CdS catalysts and their use in
methylene blue degradation under visible light irradiation. Modern Research in Catalysis 6(1): 1-14.
Kane, R.S., Takayama, S.,
Ostuni, E., Ingber, D.E. & Whitesides, G.M. 1999. Patterning proteins and
cells using soft lithography. Biomaterials 20(23-24): 161-174.
Kazmerski, L.L. 2006. Solar
photovoltaics R&D at the tipping point: A 2005 technology overview. Journal
of Electron Spectroscopy and Related Phenomena 150(2-3): 105-135.
Khan, S.U., Göbel,
O.F., Blank, D.H.A. & Elshof, J.E. 2009. Patterning lead zirconate titanate
nanostructures at sub-200-nm resolution by soft confocal imprint lithography
and nanotransfer molding. Applied Materials & Interfaces 1(10):
2250-2255.
Murugadoss, G. 2012.
Luminescence properties of multilayer coated single structure ZnS/CdS/ZnS
nanocomposites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 93:
53-57.
Jabeen, U., Shah, S.M.,
Hussain, N., Ali, A. & Khan, S.U. 2016. Synthesis, characterization, band
gap tuning and applications of Cd-doped ZnS nanoparticles in hybrid solar
cells. Journal of Photochemistry and Photobiology A: Chemistry 325:
29-38.
Xia, Y. & Whitesides, G.M. 1998. Soft
lithography. Annual Review of Materials Science 28: 153-184.
Wu, X. 2004.
High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy 77(6): 803-814.
Zheng, B., Roach, L.S.
& Ismagilov, R.F. 2003. Screening of protein crystallization conditions on
a microfluidic chip using nanoliter-size droplets. Journal of the American
Chemical Society 125(37): 11170-11171.
*Corresponding author; email:
roha64@yahoo.com
|