Sains Malaysiana 49(8)(2020): 1925-1934
http://dx.doi.org/10.17576/jsm-2020-4908-14
Effect of
Polyacrylamide on Compression Rate of Lime Stabilized Soil
(Kesan Poliakrilamida terhadap Kadar Pemampatan Tanah Terstabil Kapur)
MINGXING
GAO1*, FEILONG YUAN1, YANHUA XUE1 & PENG
GUAN2
1College
of Energy and Transportation Engineering, Inner Mongolia, Agricultural
University
Hohhot,
Inner Mongolia, 010018, China
2Hongrui
Road and Bridge Engineering Science, Technology Research Institute, Hinggan League, Inner Mongolia, 137400, China
Received:
17 December 2019/Accepted: 21 April 2020
ABSTRACT
In
order to explore the influence mechanism of polyacrylamide on the
compressibility of lime-stabilized soil, polyacrylamide with different contents
was added to lime-stabilized soil, and the relationship between the
consolidation coefficient and the consolidation pressure was obtained through
one-dimensional laboratory consolidation experiment, and samples were taken for
nitrogen adsorption experiment and observation with solid microscope. The
results show that the microscopic image shows that the reaction of
polyacrylamide with lime will form a spatial network structure; 0.24%
polyacrylamide can effectively reduce the compression of lime stabilized soil,
and the porosity ratio of solidified soil can be increased by 15.4%, and the
consolidation rate can be accelerated by 413.2%. The pore volume distribution
shows that the addition of polyacrylamide to lime stabilized soil can reduce
the mesopore volume of the solidified soil and
produce ultra-large pores. At the same time, the porosity ratio of the
solidified soil is increased, which is beneficial to the drainage of super-pore
water in the soil, accelerate the consolidation rate of solidified soil,
shortens the time of consolidation and stability of the soil.
Keywords:
Consolidation coefficient; microscopic image; nitrogen adsorption; pore
structure
ABSTRAK
Dalam usaha untuk mengkaji mekanisme kesan poliakrilamida terhadap kebolehmampatan tanah terstabil kapur, poliakrilamida berbeza kandungan ditambahkan kepada tanah terstabil kapur dan hubungan antara pekali penggabungan dan penyatuan tekanan diperoleh melalui uji kaji penyatuan satu dimensi dan sampel diambil untuk uji kaji penjerapan nitrogen dan pemerhatian dengan mikroskop pejal. Hasilnya, imej mikroskopik menunjukkan bahawa tindak balas poliakrilamida dengan kapur akan membentuk struktur rangkaian reruang; 0.24% poliakrilamida dapat mengurangkan pemampatan tanah terstabil kapur dengan berkesan dan keliangan tanah yang dipadatkan dapat ditingkatkan sebanyak 15.4% dan kadar penyatuan dapat dipercepat sebanyak 413.2%. Taburan isi padu liang menunjukkan bahawa penambahan poliakrilamida kepada tanah yang terstabil kapur dapat mengurangkan isi padu tanah pejal, menghasilkan liang yang sangat besar dan meningkatkan nisbah keliangan tanah yang dipadatkan. Kadar penyatuan tanah yang dipadatkan memendekkan masa penyatuan dan kestabilan tanah.
Kata kunci: Imej mikroskopik; pekali penyatuan; penjerapan nitrogen; struktur liang
REFERENCES
Abhishek,
S.V., Rajyalakshmi, K. & Madhav,
M.R. 2016. Engineering of ground with granular piles: A critical review. International Journal of Geotechnical Engineering 10(4): 337-357.
Bardestani, R., Patience,
G.S. & Kaliaguine, S. 2019. Experimental methods
in chemical engineering: Specific surface area and pore size distribution
measurements-BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 97(11): 2781-2791.
Barvenik, F.W. 1994.
Polyacrylamide characteristics related to soil applications. Soil Science
Society of America Journal 158(4): 235-243.
Fan,
J.H. 2008. Multi-scale analysis of material deformation and failure. Science
Press 2008(1).
Gadouri, H., Harichane, K. & Ghrici, M.
2017. Effect of sodium sulphate on the shear strength
of clayey soils stabilised with additives. Arabian
Journal of Geosciences 10(218): 1-10.
Georgees, R.N., Hassan,
R.A., Evans, R.P. & Jegatheesan, P. 2018.
Resilient response characterization of pavement foundation materials using a
polyacrylamide-based stabilizer. Journal of Materials in Civil Engineering 30(1): 04017252.
Hsu,
T.W. & Tsai, T.H. 2016. Combined vertical and radial consolidation under
time- dependent loading. International Journal of Geomechanics 16(3): 04015073.
James,
J. & Pandian, P.K. 2018. Bagasse ash as an auxiliary additive to lime
stabilization of an expansive soil: Strength and microstructural investigation. Advances in Civil Engineering 2018: 1-16.
Jha, A.K. & Sivapullaiah,
P.V. 2017. Physical and strength development in lime treated gypseous soil with fly ash - micro-analyses. Applied
Clay Science 145: 17-27.
Jung,
J., Ku, T. & Ahn, J. 2017. Small strain stiffness
of unsaturated sands containing a polyacrylamide solution. Materials (Basel) 10(4): 401.
Keramatikerman, M., Chegenizadeh, A. & Nikraz, H.
2016. Effect of GGBFS and lime binders on the engineering properties of clay. Applied
Clay Science 132(2016): 722-730.
Keykha, H.A., Mohamadzadeh,
H., Asadi, A. & Kawasaki, S. 2019. Ammonium-free
carbonate-producing bacteria as an ecofriendly soil biostabilizer. Geotechnical Testing Journal 42(1): 19-29.
Lentz,
R.D. 2015. Polyacrylamide and biopolymer effects on flocculation, aggregate
stability, and water seepage in a silt loam. Geoderma 241: 289-294.
Li,
Y.C., Min, X.B., Chai, L.Y., Shi, M.Q., Tang, C.J., Wang, Q.W. & Liyang, W.J. 2016. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge
containing arsenic and heavy metals. Journal of Environmental Management 181:
756-761.
Mamedov, A.I., Wagner,
L.E., Huang, C., Norton, L.D. & Levy, G.J. 2010. Polyacrylamide effects on
aggregate and structure stability of soils with different clay mineralogy. Soil
Science Society of America Journal 74(5): 1720-1732.
Mashifana, T.P., Okonta, F.N. & Ntuli, F.
2018. Geotechnical properties and microstructure of lime-fly ash-phosphogypsum-stabilized soil. Advances in Civil
Engineering 2018: 1-9.
Mingjing, J. 2019. New
horizons of modern soil mechanics research-macro and micro soil mechanics. Chinese Journal of Geotechnical Engineering 42(2): 195-254.
Mohammadi, A., Dehestani, M. & Shooshpasha,
I. 2015. Mechanical properties of sandy
soil stabilized with modified sulfur. Journal of Materials in Civil
Engineering 27(4): 04014140.
Naeini, S.A., Naderinia,
B. & Izadi, E. 2012. Unconfined compressive strength of clayey soils
stabilized with waterborne polymer. KSCE Journal of Civil Engineering 16(6): 943-949.
Nilo, C.C.P.D., Rodrigo, B.S.P.D. &
Hugo, C.S.F.M.S. 2019. Short- and long-term effects of sodium chloride on
strength and durability of coal fly ash stabilized with carbide lime. Canadian
Geotechnical Journal 56(12): 1929-1939.
Ojuri, O.O., Adavi,
A.A. & Oluwatuyi, O.E. 2017. Geotechnical and environmental
evaluation of lime-cement stabilized soil-mine tailing mixtures for highway
construction. Transportation Geotechnics 10:
1-12.
Sharma,
L.K., Sirdesai, N.N., Sharma, K.M. & Singh, T.N.
2018. Experimental study to examine the independent roles of lime and cement on
the stabilization of a mountain soil: A comparative study. Applied Clay
Science 152(2018): 183-195.
Sigmund,
G., Huffer, T., Hofmann, T. & Kah,
M. 2017. Biochar total surface area and total pore
volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Science of The Total
Environment 580(2018): 770-775.
Soltani-Jigheh, H., Bagheri, M. & Amani-Ghadim,
A.R. 2019. Use of hydrophilic polymeric stabilizer to improve strength and
durability of fine-grained soils. Cold Regions Science and Technology 157: 187-195.
Wang,
Y., Li, S. & Yang, H. 2018. In situ stabilization of some mercury-containing soils using organically modified
montmorillonite loading by thiol-based material. Journal of Soils and
Sediments 19(4): 1767-1774.
Wei,
X., Duc, M., Hattab, M., Reuschlé, T., Taibi, S. & Fleureau, J.M. 2016. Effect of decompression and suction on
macroscopic and microscopic behavior of a clay rock. Acta Geotechnica 12(1): 47-65.
Zhang,
M., Guo, H., El-Korchi, T.,
Zhang, G. & Tao, M. 2013. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction
and Building Materials 47(22): 1468-1478.
*Corresponding author; email:
gaomingxing_2000@imau.edu.cn
|