Sains Malaysiana 49(8)(2020): 1925-1934

http://dx.doi.org/10.17576/jsm-2020-4908-14

 

Effect of Polyacrylamide on Compression Rate of Lime Stabilized Soil

(Kesan Poliakrilamida terhadap Kadar Pemampatan Tanah Terstabil Kapur)

 

MINGXING GAO1*, FEILONG YUAN1, YANHUA XUE1 & PENG GUAN2

 

1College of Energy and Transportation Engineering, Inner Mongolia, Agricultural University

Hohhot, Inner Mongolia, 010018, China

 

2Hongrui Road and Bridge Engineering Science, Technology Research Institute, Hinggan League, Inner Mongolia, 137400, China

 

Received: 17 December 2019/Accepted: 21 April 2020

 

ABSTRACT

In order to explore the influence mechanism of polyacrylamide on the compressibility of lime-stabilized soil, polyacrylamide with different contents was added to lime-stabilized soil, and the relationship between the consolidation coefficient and the consolidation pressure was obtained through one-dimensional laboratory consolidation experiment, and samples were taken for nitrogen adsorption experiment and observation with solid microscope. The results show that the microscopic image shows that the reaction of polyacrylamide with lime will form a spatial network structure; 0.24% polyacrylamide can effectively reduce the compression of lime stabilized soil, and the porosity ratio of solidified soil can be increased by 15.4%, and the consolidation rate can be accelerated by 413.2%. The pore volume distribution shows that the addition of polyacrylamide to lime stabilized soil can reduce the mesopore volume of the solidified soil and produce ultra-large pores. At the same time, the porosity ratio of the solidified soil is increased, which is beneficial to the drainage of super-pore water in the soil, accelerate the consolidation rate of solidified soil, shortens the time of consolidation and stability of the soil.

 

Keywords: Consolidation coefficient; microscopic image; nitrogen adsorption; pore structure

 

ABSTRAK

Dalam usaha untuk mengkaji mekanisme kesan poliakrilamida terhadap kebolehmampatan tanah terstabil kapur, poliakrilamida berbeza kandungan ditambahkan kepada tanah terstabil kapur dan hubungan antara pekali penggabungan dan penyatuan tekanan diperoleh melalui uji kaji penyatuan satu dimensi dan sampel diambil untuk uji kaji penjerapan nitrogen dan pemerhatian dengan mikroskop pejal. Hasilnya, imej mikroskopik menunjukkan bahawa tindak balas poliakrilamida dengan kapur akan membentuk struktur rangkaian reruang; 0.24% poliakrilamida dapat mengurangkan pemampatan tanah terstabil kapur dengan berkesan dan keliangan tanah yang dipadatkan dapat ditingkatkan sebanyak 15.4% dan kadar penyatuan dapat dipercepat sebanyak 413.2%. Taburan isi padu liang menunjukkan bahawa penambahan poliakrilamida kepada tanah yang terstabil kapur dapat mengurangkan isi padu tanah pejal, menghasilkan liang yang sangat besar dan meningkatkan nisbah keliangan tanah yang dipadatkan. Kadar penyatuan tanah yang dipadatkan memendekkan masa penyatuan dan kestabilan tanah.

 

Kata kunci: Imej mikroskopik; pekali penyatuan; penjerapan nitrogen; struktur liang

 

REFERENCES

Abhishek, S.V., Rajyalakshmi, K. & Madhav, M.R. 2016. Engineering of ground with granular piles: A critical review. International Journal of Geotechnical Engineering 10(4): 337-357.

Bardestani, R., Patience, G.S. & Kaliaguine, S. 2019. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements-BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 97(11): 2781-2791.

Barvenik, F.W. 1994. Polyacrylamide characteristics related to soil applications. Soil Science Society of America Journal 158(4): 235-243.

Fan, J.H. 2008. Multi-scale analysis of material deformation and failure. Science Press 2008(1).

Gadouri, H., Harichane, K. & Ghrici, M. 2017. Effect of sodium sulphate on the shear strength of clayey soils stabilised with additives. Arabian Journal of Geosciences 10(218): 1-10.

Georgees, R.N., Hassan, R.A., Evans, R.P. & Jegatheesan, P. 2018. Resilient response characterization of pavement foundation materials using a polyacrylamide-based stabilizer. Journal of Materials in Civil Engineering 30(1): 04017252.

Hsu, T.W. & Tsai, T.H. 2016. Combined vertical and radial consolidation under time- dependent loading. International Journal of Geomechanics 16(3): 04015073.

James, J. & Pandian, P.K. 2018. Bagasse ash as an auxiliary additive to lime stabilization of an expansive soil: Strength and microstructural investigation. Advances in Civil Engineering 2018: 1-16.

Jha, A.K. & Sivapullaiah, P.V. 2017. Physical and strength development in lime treated gypseous soil with fly ash - micro-analyses. Applied Clay Science 145: 17-27.

Jung, J., Ku, T. & Ahn, J. 2017. Small strain stiffness of unsaturated sands containing a polyacrylamide solution. Materials (Basel) 10(4): 401.

Keramatikerman, M., Chegenizadeh, A. & Nikraz, H. 2016. Effect of GGBFS and lime binders on the engineering properties of clay. Applied Clay Science 132(2016): 722-730.

Keykha, H.A., Mohamadzadeh, H., Asadi, A. & Kawasaki, S. 2019. Ammonium-free carbonate-producing bacteria as an ecofriendly soil biostabilizer. Geotechnical Testing Journal 42(1): 19-29.

Lentz, R.D. 2015. Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam. Geoderma 241: 289-294.

Li, Y.C., Min, X.B., Chai, L.Y., Shi, M.Q., Tang, C.J., Wang, Q.W. & Liyang, W.J. 2016. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy       metals. Journal of Environmental Management 181: 756-761.

Mamedov, A.I., Wagner, L.E., Huang, C., Norton, L.D. & Levy, G.J. 2010. Polyacrylamide effects on aggregate and structure stability of soils with different clay mineralogy. Soil Science Society of America Journal 74(5): 1720-1732.

Mashifana, T.P., Okonta, F.N. & Ntuli, F. 2018. Geotechnical properties and microstructure of lime-fly ash-phosphogypsum-stabilized soil. Advances in Civil Engineering 2018: 1-9.

Mingjing, J. 2019. New horizons of modern soil mechanics research-macro and micro soil mechanics. Chinese Journal of Geotechnical Engineering 42(2): 195-254.

Mohammadi, A., Dehestani, M. & Shooshpasha, I. 2015.  Mechanical properties of sandy soil stabilized with modified sulfur. Journal of Materials in Civil Engineering 27(4): 04014140.

Naeini, S.A., Naderinia, B. & Izadi, E. 2012. Unconfined compressive strength of clayey soils stabilized with waterborne polymer. KSCE Journal of Civil Engineering 16(6): 943-949.

Nilo, C.C.P.D., Rodrigo, B.S.P.D. & Hugo, C.S.F.M.S. 2019. Short- and long-term effects of sodium chloride on strength and durability of coal fly ash stabilized with carbide lime. Canadian Geotechnical Journal 56(12): 1929-1939.

Ojuri, O.O., Adavi, A.A. & Oluwatuyi, O.E. 2017. Geotechnical and environmental evaluation of lime-cement stabilized soil-mine tailing mixtures for highway construction. Transportation Geotechnics 10: 1-12.

Sharma, L.K., Sirdesai, N.N., Sharma, K.M. & Singh, T.N. 2018. Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science 152(2018): 183-195.

Sigmund, G., Huffer, T., Hofmann, T. & Kah, M. 2017. Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Science of The Total Environment 580(2018): 770-775.

Soltani-Jigheh, H., Bagheri, M. & Amani-Ghadim, A.R. 2019. Use of hydrophilic polymeric stabilizer to improve strength and durability of fine-grained soils. Cold Regions Science and Technology 157: 187-195.

Wang, Y., Li, S. & Yang, H. 2018. In situ stabilization of some mercury-containing soils using organically modified montmorillonite loading by thiol-based material. Journal of Soils and Sediments 19(4): 1767-1774.

Wei, X., Duc, M., Hattab, M., Reuschlé, T., Taibi, S. & Fleureau, J.M. 2016. Effect of decompression and suction on macroscopic and microscopic behavior of a clay rock. Acta Geotechnica 12(1): 47-65.

Zhang, M., Guo, H., El-Korchi, T., Zhang, G. & Tao, M. 2013. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials 47(22): 1468-1478.

 

*Corresponding author; email: gaomingxing_2000@imau.edu.cn

   

 

 

previous