Sains Malaysiana 49(8)(2020): 1935-1945

http://dx.doi.org/10.17576/jsm-2020-4908-15

 

Kecekapan Filem Kanji/Minyak Kayu Manis sebagai Pembungkus Makanan dengan Sifat Antimikrob

(Effectiveness of Starch/Cinnamon Oil Film as Food Packaging with Antimicrobial Properties)

 

UMMI HABIBAH ABDULLAH1, ISHAK AHMAD1*, AINON HAMZAH2 & NOOR AFIZAH ROSLI1

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Program Sains Biologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 21 January 2020/Accepted: 14 April 2020

 

Abstrak

Dalam kajian ini, filem kanji/minyak kayu manis telah dihasilkan menggunakan kaedah pengacauan larutan dengan kandungan minyak kayu manis (MKM) berbeza untuk mengkaji kesan MKM terhadap sifat antimikrob filem kanji. Sifat kelutsinaran filem didapati berkurang apabila peratus kandungan MKM meningkat yang telah menghalang penembusan cahaya. Sementara itu, analisis ATR-FTIR mendapati bahawa tiada penyesaran puncak atau pembentukan puncak baharu yang menunjukkan bahawa MKM dan filem kanji tidak terikat secara kimia. Kajian aktiviti antimikrob filem ini terhadap Bacillus cereus dan Aspergillus niger telah mendapati berlakunya peningkatan kecekapan aktiviti antimikrob bagi penambahan minyak kayu manis (MKM) dengan peningkatan diameter zon perencatan. Didapati berlaku perencatan pada kepekatan minimum MKM ditingkatkan bermula 16% dalam filem kanji mencatatkan corak pertumbuhan dalam zon rencatan dengan diameter 24-44.2 mm dengan peningkatan 28.23-37.88% dan 34.12-52%, masing-masing bagi zon perencatan terhadapB. cereus danA. niger berbanding tiada sebarang zon perencatan untuk filem kanji tanpa penambahan MKM. Pemerhatian morfologi menunjukkan pembentukan liang dan pemisahan fasa yang heterogen antara MKM dan kanji. Tegangan maksimum filem pula menunjukkan pengurangan kekuatan tegangan apabila kepekatan MKM bertambah walaupun tidak ketara pada peningkatan MKM sehingga 24%. Sebaliknya, terikan pada takat putus filem didapati meningkat sebanyak 102-252% selari dengan penambahan MKM yang bertindak sebagai agen pemplastikan. Keseluruhannya, filem kanji/MKM telah berjaya disediakan dan pencirian sifat fizikal dan aktiviti antimikrob bagi filem ini menunjukkan potensinya dalam penggunaan pembungkusan makanan.

 

Kata kunci: Ciri fizikal; kanji; minyak kayu manis; sifat antimikrob

 

Abstract

In this study, starch/cinnamon oil film was prepared by solution casting method with different concentrations of cinnamon oil (MKM) to study the effect of cinnamon oil on the antimicrobial properties of starch film. The transparency of the films was reduced with the increment of MKM. The transparency of the film was found to decrease as the percentage of MKM content increased which prevented light penetration. Meanwhile, ATR-FTIR analysis showed neither shifting of peak positions nor new peak formation which showed that MKM and starch film were not chemically bound. The antimicrobial studies of the films on Bacillus cereus and Aspergillus niger recorded the improvement of antimicrob activities with the addition of MKM with the increase of inhibition zone. It was found that inhibition at the minimum MKM concentration increased from 16% in the starch film to a growth pattern in the zone of 24-44.2 mm in diameter with 28.23-37.88% and 34.12-52% increase in B. cereus and A. niger, respectively, compared to no inhibition zone for starch film without the addition of MKM. Morphological observations indicate pore formation and heterogeneous phase separation between MKM and starch. The maximum tensile strength of the film showed a decrease in tensile strength as the concentration of MKM increased despite not significant increase in MKM up to 24%. On the other hand, strain at break was found to increase by 102-252% in line with the addition of MKM acting as a plasticizing agent. In conclusion, starch/MKM films were successfully prepared and characterized. The physical and antimicrobial properties of the films displayed promising potential in food packaging application.

 

Keywords: Antimicrobial properties; cinnamon oil; physical properties; starch

 

REFERENCES

Afandi, A., Lazim, A.M., Azwanida, N.N., Bakar, M.A., Airianah, O.B. & Fazry, S. 2017. Antibacterial properties of crude aqueous Hylocereus polyrhizus peel extracts in lipstick formulation against gram-positive and negative bacteria. Malaysian Applied Biology 46(2): 29-34.

Ahmed, A.J., Thomas, L. & Arfat, Y.A. 2018. Rheological, structural and functional properties qunoa starch. Carbohydrate Polymers 116: 302-311.

Ahmed, J., Mulla, M.Z. & Arfat, Y.A. 2016. Thermo-mechanical, structural characterization and antibacterial performance of solvent casted polylactide/cinnamon oil composite films. Food Control 69: 196-204.

Ali, A., Chen, Y., Liu, H., Yu, L., Khalid, S., Zhu, J. & Chen, L. 2018. Starch-based antimicrobial films functionalized by pomegranate peel. International Journal of Biological Macromolecules 60(19): 4841-4848.

Amaral, J., Dannenberg, S., Biduski, B., Lisie, S., Hüttner, D., Arocha, M. & Maria, A. 2019. Antibacterial activity, optical, mechanical and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymer 222: 114981.

Arancibia, M., Giménez, B., López-Caballero, M.E., Gómez-Guillén, M.C. & Montero, P. 2014. Release of cinnamon essential oil from polysaccharide bilayer films and its use for microbial growth inhibition in chilled shrimps. LWT - Food Science and Technology 59(2): 989-995.

Atares, L. & Chiralt, A. 2016. Essential oils as additives in biodegradable films and coatings for active packaging. Trends in Food Science & Technology 48: 51-62.

Botelho, L.N.S., Rocha, D.A., Braga, M.A., Silva, A. & de Abreu, C.M.P. 2016. Quality of guava cv. “Pedro Sato” treated with cassava starch and cinnamon essential oil. Scientia Horticulturae 209: 214-220.

Bullerman, L.B., Lieu, F.Y. & Seier, S.A. 1977. Inhibition of growth and aflatoxin production by cinnanamon and clove oils. Cinnamic aldehyde and eugenol. Journal of Food Science 42(4): 1107-1109.

Capek, P., Drábik, M. & Turjan, J. 2010. Characterization of starch and its mono and hybrid derivatives by thermal analysis and FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry 99(2): 667-673.

Chao, S.C., Young, D.G. & Oberg, C.J. 2000. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research 12(5): 37-41.

Chu, Y., Xu, T., Gao, C., Liu, X., Zhang, N., Feng, X., Liu, X., Shen, X. & Tang, X. 2019. Evaluations of physicochemical and biological properties of pullulan-based fi lms incorporated with cinnamon essential oil and Tween 80. International Journal of Biological Macromolecules 122: 388-394.

Dankar, I., Haddarah, A., Omar, F.E., Pujolà, M. & Sepulcre, F. 2018. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chemistry 260: 7-12.

Diao, M., Qi, D., Xu, M., Lu, Z., Lv, F., Bie, X. & Zhao, H. 2018. Antibacterial activity and mechanism of monolauroyl-galactosylglycerol against Bacillus cereus. Food Control 85: 339-344.

Dufresne, A., Thomas, S. & Pothan, L.A. 2013. Biopolymer Nanocomposites. New Jersey: John Wiley & Sons.

Dumoulin, Y., Alex, S., Szabo, P., Cartilier, L. & Alexandru, M. 1998. Cross-linked amylose as matrix for drug controlled release. X-ray and FT-IR structural analysis. Carbohydrate Polymers 37(4): 361-370.

Espitia, P., Soares, N., Botti, L., Melo, N.R., Pereira, O. & Silwa, W. 2012. Assessment of the efficiency of essential oils in the preservation of postharvest papaya in antimicrobial packaging systerm. Brazillian Journal of Food Technology 15(4): 332-342.

Famá, L., Flores, S.K., Gerschenson, L. & Goyanes, S. 2006. Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers 66(1): 8-15.

Famá, L., Rojas, A.M., Goyanes, S. & Gerschenson, L. 2005. Mechanical properties of tapioca-starch edible films containing sorbates. LWT - Food Science and Technology 38(6): 631-639.

Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M. & Goyanes, S. 2011. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers 84(1): 203-210.

Ghasemlou, M., Aliheidari, N., Fahmi, R. & Shojaee-aliabadi, S. 2013. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydrate Polymers 98(1): 1117-1126.

Han, J.H. & Floros, J.D. 1997. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting 13(4): 287-298.

Han, Y., Yu, M. & Wang, L. 2018. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life 15(11): 35-42.

Han, Y., Yu, M. & Wang, L. 2017. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life 11: 1-8.

Hu, J., Wang, X., Xiao, Z. & Bi, W. 2015. Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. LWT - Food Science and Technology 63(1): 519-526.

Jaramillo, C.M., Gutiérrez, T.J., Goyanes, S., Bernal, C. & Famá, L. 2016. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers 151: 150-159.

Jiugao, Y. & Ning, W. 2005. The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch - Stärke 57(10): 494-504.

Jouki, M., Mortazavi, S.A., Yazdi, F.T. & Koocheki, A. 2014. Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers 99: 537-546.

Kim, H., Beak, S.E. & Song, K.B. 2018. Development of a hag fish skin gelatin film containing cinnamon bark essential oil. LWT - Food Science and Technology 96(5): 583-588.

Li, J., Ye, F., Lei, L. & Zhao, G. 2018. Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance. International Journal of Biological Macromolecules 115: 547-553.

Li, Y., Kong, D. & Wu, H. 2013. Analysis and evaluation of essential oil components of cinnamon barks using GC - MS and FTIR spectroscopy. Industrial Crops and Products 41: 269-278.

Ma, Q., Zhang, Y., Critzer, F., Davidson, P.M., Zivanovic, S. & Zhong, Q. 2015. Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids 52: 533-542.

Muller, J., González-martínez, C. & Chiralt, A. 2017. Polylactic acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal 95(7): 56-70.

Ojagh, S.M., Rezaei, M., Razavi, S.H. & Hosseini, S.M.H. 2010. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry 120(1): 193-198.

Oriani, V.B., Molina, G., Chiumarelli, M., Pastore, G.M. & Hubinger, M.D. 2014. Properties of cassava starch-based edible coating containing essential oils. Journal of Food Science 79(2): 189-194.

Oussalah, M., Caillet, S. & Lacroix, M. 2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Esherichia coli O157:H7 and Listeria monocytogenes. Journal of Protection 69(5): 1046-1055.

Peng, Y. & Li, Y. 2014. Food hydrocolloids combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids 36: 287-293.

Phan, T.D., Peroval, C., Debeaufort, F., Despre, D., Courthaudon, J.L. & Voilley, A. 2002. Arabinoxylan-lipid-based edible films and coatings. Influence of drying temperature on film structure and functional properties. Journal of Agricultural and Food Chemsitry 50: 2423-2428.

Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A. & Goyanes, S. 2017. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids 63: 488-495.

Pitt, J.I. & Hocking, A.D. 2009. Fungi and Food Spoilage. New York: Springer.

PlasticsEurope 2016. An analysis of European plastics production, demand and wate data. Plastic-The Facts. Association of Plastics Manufactures.

Rosli, N.A., Ahmad, I, Anuar, F.H. & Abdullah, I. 2018. The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly(lactic acid). Journal of Cleaner Production 198: 987-995.

Sánchez-gonzález, L., González-martínez, C., Chiralt, A. & Cháfer, M. 2010. Physical and antimicrobial properties of chitosan - tea tree essential oil composite films. Journal of Food Engineering 98: 443-452.

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A. & Cháfer, M. 2009. Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids 23(8): 2102-2109.

Seligra, P.G., Medina Jaramillo, C., Famá, L. & Goyanes, S. 2016. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydrate Polymers 138: 66-74.

Sessini, V., Arrieta, M.P., Kenny, J.M. & Peponi, L. 2016. Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability 132: 157-168.

Shamsuri, A.A., Daik, R., Ahmad, I. & Jumali, M.H.H. 2009. Nylon-6/liquid natural rubber blends prepared via emulsion dispersion. Journal of Polymer Research 16(4): 381-387.

Sheng, L., Li, P., Wu, H., Liu, Y., Han, K.E., Gouda, M., Tong, Q., Ma, M. & Jin, Y. 2018. Tapioca starch-pullulan interaction during gelation and retrogradation. LWT - Food Science and Technology 96(5): 432-438.

Shiku, Y., Hamaguchi, P.Y., Benjakul, S., Visessanguan, W. & Tanaka, M. 2004. Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry 86: 493-499.

Siah, W.M., Abdullah, A. & Ahmad, I. 2015. Edible films from seaweed (Kappaphycus alvarezii). International Food Research Journal 22(6): 2230-2236.

Song, X., Zuo, G. & Chen, F. 2018. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules 107: 1302-1309.

Subhankulov, M.A. & Krainova, L.I. 1979. Properties and production characteristics of vomiting, diarrheal, and necrotizing toxins of B. cereus. American Journal of Clinical Nutrition 32(1): 219-228.

Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S. & Osako, K. 2016. Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocolloids 56: 93-107.

Tongnuanchan, P., Benjakul, S. & Prodpran, T. 2015. Emulsion film based on fish skin gelatin and palm oil: Physical, structural and thermal properties. Food Hydrocolloids 48: 248-259.

United States Food and Drug Administration (U.S. FDA). 2009. Code of Federal Regulations Title 21.

Valencia-sullca, C., Vargas, M., Atares, L. & Chiralt, A. 2017. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids 19: 53-61.

Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., Cheng, Y. & Jing, H. 2011. Synergistic antimicrobial activities of natural essential oils with chitosan films. Journal of Agricultural and Food Chemistry 59(23): 12411-12419.

Wen, P., Zhu, D.H., Wu, H., Zong, M.H., Jing, Y.R. & Han, S.Y. 2016. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59: 366-376.

Wendakoon, C. & Sakaguchi, M. 1995. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. Journal of Food Protection 58(3): 280-283.

Wu, J., Sun, X., Guo, X., Ge, S. & Zhang, Q. 2017. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries 2: 185-192.

Xie, F., Pollet, E., Halley, P.J. & Avérous, L. 2013. Starch-based nano-biocomposite. Progress in Polymer Science 38: 1590-1628.

Xing, F., Hua, H., Selvaraj, J.N., Zhao, Y., Zhou, L. & Liu, X. 2014. Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 46: 343-350.

Young, R.J., Bannister, D.J., Cervenka, A.J. & Ahmad, I. 2000. Effect of surface treatment upon the pull-out behaviour of aramid fibres from epoxy resins. Journal of Materials Science 35(8): 1939-1947.

Zainuddin, N., Ahmad, I., Kargarzadeh, H. & Ramli, S. 2017. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydrate Polymers 163: 261-269.

Zhang, Y., Ma, Q., Critzer, F., Davidson, P.M. & Zhong, Q. 2015. Physical and antibacterial properties of alginate films containing cinnamon bark oil and soybean oil. LWT-Food Science and Technology 64(1): 423-430.

 

*Corresponding author; email: gading@ukm.edu.my

   

 

 

previous