Sains Malaysiana 50(8)(2021): 2167-2178
http://doi.org/10.17576/jsm-2021-5008-03
Agro-ecological Characterization of Vermicomposted Sewage Sludge from Municipal and Poultry
Enterprise Wastewater Treatment Plants
(Pencirian Agro-ekologi Lumpur Kumbahan Vermikompos daripada Perbandaran dan Loji Rawatan Sisa Air Perusahaan Penternakan)
DIYANA DERMENDZHIEVA, TONCHO DINEV,
GERGANA KOSTADINOVA, GEORGI PETKOV & GEORGI BEEV*
Trakia University, Faculty of Agriculture, 6000 Stara Zagora, Bulgaria
Received: 25 March 2020/Accepted:
25 December 2020
ABSTRACT
The purpose of this study was to make an agro-ecological characterization of vermicompost (VC)
produced from sewage sludge (SS). As a substrate, SS from municipal and poultry
meat processing enterprise wastewater treatment plants (MTP and PTP,
respectively) was utilized. The substrates were vermicomposted by Red Californian earthworm (Lumbricus rubellus) for 120
days. For VC quality assessment, 19 physicochemical and 6 microbiological
parameters were used. The evaluation of physicochemical parameters was done
according to ISO standard methods and microbiological analysis-by plating 1 mL
of sample dilutions on selective, chromogenic culture medium sheets. It was
found that the vermicompost from MTP (VC-M) had higher levels of EC, mineral
elements (N, P and K compounds in forms available to plants), heavy metals (Mn,
Cu, Zn, Cr, Ni, Pb, Cd) and coliforms, and lower levels of pH, TOC, C/N ratio,
Fe, total plate count (TPC), Enterobacteriaceae and Salmonella spp.
counts compared to VC from PTP (VC-P). During the vermicomposting process, the
substrates from both wastewater treatment plants (TPs) showed similar trends
towards decrease in pH, TOC, N-NH4+, C/N ratio, TPC,
coliforms, E. coli, Enterobacteriaceae and Salmonella spp.
counts, whereas the opposite trends were established for EC, TKN, N-NO3-,
TP, P2O5, TK, and K2O values. The
vermicomposting had a negligible effect on heavy metal concentrations. In the
final substrates E. coli were not detected, while the bacterial spore
forms (Clostridium perfringens) were not eliminated. The final
substrates cannot be used as fertilizers or soil amendments because of the
presence of Salmonella spp. and C. perfringens over the
permissible limits according to EU and Bulgarian regulations.
Keywords: Lumbricus rubellus; physicochemical
and microbiological parameters; sewage sludge; vermicompost
ABSTRAK
Tujuan kajian ini adalah untuk membuat pencirian agro-ekologi vermikompos (VC)
yang dihasilkan daripada enap cemar kumbahan (SS). Sebagai substrat, SS daripada loji pengolahan air sisa perusahaan pemprosesan daging perbandaran dan unggas (MTP dan
PTP) digunakan. Substrat dikomposkan oleh cacing tanah California Merah (Lumbricus rubellus) selama 120 hari. Untuk penilaian kualiti VC, 19 parameter fizikokimia dan 6 mikrobiologi digunakan. Penilaian parameter fizikokimia dilakukan mengikut kaedah piawaian ISO dan analisis mikrobiologi dengan meletakkan 1 mL pelarutan sampel pada kepingan medium
kultur kromogen terpilih. Didapati bahawa vermikompos daripada MTP (VC-M) mempunyai tahap EC yang lebih tinggi, unsur mineral (sebatian N, P dan K dalam bentuk yang tersedia untuk tanaman), logam berat (Mn, Cu, Zn, Cr, Ni,
Pb, Cd) dan koliform, dan tahap pH, TOC, C/N ratio yang lebih rendah,
Fe, jumlah plat keseluruhan (TPC), Enterobacteriaceae dan Salmonella spp. kiraan berbanding VC dari PTP
(VC-P). Semasa proses vermikompos, substrat daripada kedua-dua loji rawatan air sisa (TP) menunjukkan kecenderungan serupa terhadap penurunan pH, TOC, N-NH4+, C/N ratio,
TPC, coliforms, E. coli, Enterobacteriaceae dan Salmonella spp. penting, sedangkan arah aliran yang berlawanan telah ditetapkan untuk nilai EC, TKN, N-NO3-, TP, P2O5,
TK dan K2O. Pengkomposan mempunyai kesan yang tidak dapat diabaikan pada kepekatan logam berat. Pada substrat akhirE. coli tidak dikesan, sementara bentuk spora bakteria (Clostridium perfringens) tidak dihilangkan. Substrat akhir tidak boleh digunakan sebagai baja atau perubahan tanah kerana adanya Salmonella spp. dan C. perfringens melebihi had yang dibenarkan mengikut peraturan EU dan Bulgaria.
Kata kunci: Lumbricus rubellus;
parameter fizikokimia dan mikrobiologi; sisa kumbahan; vermikompos
REFERENCES
Aira, M., Gómez-Brandón,
M., González-Porto, P. & Domínguez, J. 2011. Selective reduction of the
pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technology 102(20):
9633-9637.
Ayusho, M., Pascual, J.A., Garcia, C. & Hremandez,
T. 1996. Evaluation of urban wastes for agricultural use. Soil Science Plant
Nutrition 42(1): 105-111.
Azizi, A.B., Lim, M.P.M., Noor, Z.M. &
Abdullah, N. 2013. Vermiremoval of heavy metal in
sewage sludge by utilising Lumbricus rubellus. Ecotoxicology and Environmental
Safety 90: 13-20.
Bartkowska, I., Biedka, P.
& Tałałaj, I.A. 2019. Analysis of the
quality of stabilized municipal sewage sludge. Journal of Ecological
Engineering 20(2): 200-208.
Bajsa, O., Nair, J., Mathew, K. & Ho, G.E.
2005. Processing of sewage sludge through vermicomposting. In Water and
Environment Management Series, edited by Mathew K. & Nhapi I. UK: IWA Publishing London.
Boruszko, D. 2016. Determining the effectiveness in vermicomposting of sewage sludge and the attempt to
increase the effectiveness by applying bacterial microorganisms. Journal of
Ecological Engineering 17(3): 53-59.
Boruszko, D. & Butarewicz,
A. 2015. Impact of effective microorganisms bacteria
on low-input sewage sludge treatment. Environment Protection Engineering 41(4): 83-96.
Bożym, M. 2016. Vermicomposting of
sewage sludge. Chemik 70(10): 616-619.
Braga,
F.M., Cardoso, P.H.S., Barbosa, M.H.C., Rodrigues, M.N., Sampaio, R.A. &
Fernandes, L.A. 2017. Chemical characterization of vermicompost of sewage sludge with
different proportions of diatomaceous material. Revista Brasileira
de Engenharia Agrícola e Ambiental 21(8): 519-523.
Castillo, H.,
Hernández, A., Dominguez, D. & Ojeda, D. 2010. Effect of californian red worm (Eeisenia foetida)
on the nutrient dynamics of a mixture of semicomposted materials. Chilean Journal of Agricultural Research 70(3): 465-473.
DG Env. 2009. Environmental,
Economic and Social Impacts of the Use of Sewage Sludge on Land (Final Report). Study Contract. European
Commission.
Directive 86/278/EEC. 1986. Council Directive of 12 June 1986 on the protection of the
environment, and in particular of the soil, when sewage sludge is used in
agriculture (86/278/EEC). Official Journal of the European Community.
Eastman, B.R.,
Kane, P.N., Edwards C.A., Trytek, L., Gunadi, B., Sterner, A.L. & Mobley,
J.R. 2001. The effectiveness
of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost
Science & Utilization 9(1): 38-49.
Edwards, C.A. & Bohlen, P.J. 1996. Biology
and Ecology of Earthworms. Boundary Row, London: Chapman and Hall.
Fanny, S.R., Jorge,
M.E., Mario, U.R. & Cruz, M.Q. 2015. Degradation of sewage sludge from plant wastewater
using vermicompost. International Journal of Modern Biological Research 4: 1-4.
Garg, P., Gupta, A. & Satya, S. 2006.
Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresource Technology 97(3): 391-395.
Gerba, C.P. & Smith, J.E. 2005. Sources
of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality 34(1):
42-48.
Gómez-Brandón, M.
& Domínguez, J. 2014. Recycling of solid organic wastes through
vermicomposting: Microbial community changes throughout the process and use of
vermicompost as a soil amendment. Critical Reviews in Environmental Science
and Technology 44(12): 1289-1312.
Gupta, R. & Garg, V.K. 2008.
Stabilization of primary sewage sludge during vermi-composting. Journal of Hazardous Materials 153(3): 1023-1030.
Iwai, C.B., Ta-Oun,
M., Chuasavatee, T. & Boonyotha,
P. 2013. Management of municipal sewage sludge by vermicomposting technology:
Converting a waste into a bio fertilizer for agriculture. International
Journal of Environmental and Rural Development 4(1): 169-174.
Haiba, E., Ivask, M., Olle, L., Peda, J., Kuu, A, Kutti, S. & Nei, L. 2014. Transformation of nutrients and organic
matter in vermicomposting of sewage sludge and kitchen wastes. Journal of
Agricultural Science 6(2): 114-118.
Hait, S. & Tare, V. 2012. Transformation and availability of nutrients and
heavy metals during integrated composting-vermicomposting of sewage sludge. Ecotoxicology
and Environmental Safety 79: 214-224.
Kaviraj & Sharma, S. 2003. Municipal solid
waste management through vermicomposting employing exotic and local species of
earthworms. Bioresource Technology 90(2): 169-173.
Khwairakpam, M. & Bhargava, R. 2009. Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials 161(2-3): 948-954.
Kujavska, J. & Wojcik-Oliveira, K.
2019. Effect of vermicomposting on the concentration of heavy metals in soil
with drill cuttings. Journal of Ecological Engineering 20(1): 152-157.
Kumaresan, K., Balan, R., Sridhar, A.,
Aravind, J., Kanmani, P. & Global, J. 2016. An
integrated approach of composting methodologies for solid waste management. Global
Journal of Environmental Science and Management 2(2): 157-162.
Lalander, C.H., Komakech,
A.J. & Vinnerȧs, B. 2015. Vermicomposting as
manure management strategy for urban small-holder animal farms - Kampala case
study. Waste Management 39: 96-103.
Ludibeth, S.M., Marina, I.E. & Vicenta, E.M. 2012. Vermicomposting of sewage sludge: Earthworm
population and agronomic advantages. Compost Science
& Utilization 20(1): 11-17.
Malinska, K., Zabochnicka-Swiatek,
M., Cáceres, R. & Marfà,
O. 2016. The effect of precomposted sewage sludge
mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecological
Engineering 90: 35-41.
Mushan, L.C., Dama,
L.B. & Rao, K.R. 2014. Microbial analysis of tendu leaf litter vermicompost. International Science Journal 1(1): 75-80.
Navarro, I., Jiménez, B., Lucario, S. &
Cifuentes, E. 2009. Application of helminth ova infection dose curve to
estimate the risks associated with biosolid application on soil. Journal of
Water and Health 7(1): 31-44.
Ndegwa, P.M. & Thompson, S.A. 2000. Effect of
C-to-N ratio on vermicomposting of biosolids. Bioresource Technology 75(1): 7-12.
NSPSM. 2014. National Strategic Plan for
Sludge Management from Municipal Wastewater Treatment Plants on the Territory
of the Republic of Bulgaria for the Period 2014-2020. Ministry of
Environment and Water. Sofia, Bulgaria. pp. 32-55.
Pathma, J. & Sakthivel, N. 2012. Microbial
diversity of vermicompost bacteria that exhibit useful agricultural traits and
waste management potential. Springer Plus 1(1): 1-19.
Pitombo, L.M., Carmo,
J.B., Maria, I.C, & Andrade, C.A. 2015. Carbon sequestration and greenhouse
gases emissions in soil under sewage sludge residual effects. Scientia
Agricola 72(2):
147-156.
Reddy, S.A., Akila,
S. & Kale, R.D. 2012. Management of secondary sewage sludge by
vermicomposting for use as soil amendment. Global Journal of Biotechnology
and Biochemistry 7(1): 13-18.
Regulation. 2017. Regulation
on the procedure and method of utilization of sludges from the waste water
treatment by their use in agriculture.
Sangwan, P., Kaushik,
C.P. & Garg, V.K. 2008. Vermiconversion of industrial sludge for recycling the nutrients. Bioresource
Technology 99(18): 8699-8704.
Senesi, N. 1989. Composted materials as organic
fertilizers. Science Total Environment 81-82: 521-524.
Sharma, K.S. 2003. Municipal solid waste
management through vermicomposting employing exotic and local species of
earthworms. Bioresource Technology 90(2): 169-173.
Sharma, S., Kumar, A., Singh, A.P. &
Vasudevan, P. 2009. Earthworms and vermitechnology -
A review. Dynamic Soil Dynamic Plant 3(2): 1-12.
Sinha, R.K., Herat, S., Bharambe,
G. & Brahambhatt, A. 2010. Vermistabilization of (biosolids) by earthworms: Converting a potential biohazard destined for
landfill disposal into a pathogen-free, nutritive and safe biofertilizer for
farms. Waste Management and Research 28(10): 872-881.
Singh, D. & Bhadauria,
S. 2012. Quantitative and qualitative distribution of bacteria in vermicompost
produced by different organic wastes. Nature Environment and Pollution
Technology 11(2): 331-334.
Singh, A., Singh, R.V., Saxena, A.K., Shivay, Y.S. & Nain, L. 2014. Comparative studies on
composting efficiency of Eisenia foetida(SAVIGNY)
and Perionyx excavatus(PERRIER). Journal
of Experimental Biology and Agricultural Sciences 2(5): 508-517.
Soobhany, N. 2018. Preliminary evaluation of
pathogenic bacteria loading on organic municipal solid waste compost and
vermicompost. Journal of Environmental Management 206: 763-767.
Soobhany, N., Mohee,
R. & Garg, V.K. 2017. A comparative analysis of composts and vermicomposts derived from municipal solid waste for the
growth and yield of green bean (Phaseolus vulgaris). Environmental
Science and Pollution Research 24(12): 11228-11239.
Soobhany, N., Mohee, R. & Garg, V.K. 2015.
Experimental process monitoring and potential of Eudrilus eugeniae in the vermicomposting of organic solid
waste in Mauritius. Ecological Engineering 84: 149-158.
Statistical Yearbook (SY). 2019. National
Statistical Institute, Sofia, Republic of Bulgaria.
Suthar, S. 2009. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligohaeta). Journal of Hazardous Materials 163(1):
199-206.
Tripathi, G. & Bhardwaj, P. 2004.
Comparative studies on biomass production, life cycles and composting
efficiency of Eisenia fetida(Savigny) and Lampito mauriti(Kinberg). Bioresource Technology 92(3): 275-283.
*Corresponding author; email: gbeev@abv.bg
|