Sains Malaysiana 50(8)(2021): 2167-2178

http://doi.org/10.17576/jsm-2021-5008-03

 

Agro-ecological Characterization of Vermicomposted Sewage Sludge from Municipal and Poultry Enterprise Wastewater Treatment Plants

(Pencirian Agro-ekologi Lumpur Kumbahan Vermikompos daripada Perbandaran dan Loji Rawatan Sisa Air Perusahaan Penternakan)

 

DIYANA DERMENDZHIEVA, TONCHO DINEV, GERGANA KOSTADINOVA, GEORGI PETKOV & GEORGI BEEV*

 

Trakia University, Faculty of Agriculture, 6000 Stara Zagora, Bulgaria

 

Received: 25 March 2020/Accepted: 25 December 2020

 

ABSTRACT

The purpose of this study was to make an agro-ecological characterization of vermicompost (VC) produced from sewage sludge (SS). As a substrate, SS from municipal and poultry meat processing enterprise wastewater treatment plants (MTP and PTP, respectively) was utilized. The substrates were vermicomposted by Red Californian earthworm (Lumbricus rubellus) for 120 days. For VC quality assessment, 19 physicochemical and 6 microbiological parameters were used. The evaluation of physicochemical parameters was done according to ISO standard methods and microbiological analysis-by plating 1 mL of sample dilutions on selective, chromogenic culture medium sheets. It was found that the vermicompost from MTP (VC-M) had higher levels of EC, mineral elements (N, P and K compounds in forms available to plants), heavy metals (Mn, Cu, Zn, Cr, Ni, Pb, Cd) and coliforms, and lower levels of pH, TOC, C/N ratio, Fe, total plate count (TPC), Enterobacteriaceae and Salmonella spp. counts compared to VC from PTP (VC-P). During the vermicomposting process, the substrates from both wastewater treatment plants (TPs) showed similar trends towards decrease in pH, TOC, N-NH4+, C/N ratio, TPC, coliforms, E. coli, Enterobacteriaceae and Salmonella spp. counts, whereas the opposite trends were established for EC, TKN, N-NO3-, TP, P2O5, TK, and K2O values. The vermicomposting had a negligible effect on heavy metal concentrations. In the final substrates E. coli were not detected, while the bacterial spore forms (Clostridium perfringens) were not eliminated. The final substrates cannot be used as fertilizers or soil amendments because of the presence of Salmonella spp. and C. perfringens over the permissible limits according to EU and Bulgarian regulations.

Keywords: Lumbricus rubellus; physicochemical and microbiological parameters; sewage sludge; vermicompost

 

ABSTRAK

Tujuan kajian ini adalah untuk membuat pencirian agro-ekologi vermikompos (VC) yang dihasilkan daripada enap cemar kumbahan (SS). Sebagai substrat, SS daripada loji pengolahan air sisa perusahaan pemprosesan daging perbandaran dan unggas (MTP dan PTP) digunakan. Substrat dikomposkan oleh cacing tanah California Merah (Lumbricus rubellus) selama 120 hari. Untuk penilaian kualiti VC, 19 parameter fizikokimia dan 6 mikrobiologi digunakan. Penilaian parameter fizikokimia dilakukan mengikut kaedah piawaian ISO dan analisis mikrobiologi dengan meletakkan 1 mL pelarutan sampel pada kepingan medium kultur kromogen terpilih. Didapati bahawa vermikompos daripada MTP (VC-M) mempunyai tahap EC yang lebih tinggi, unsur mineral (sebatian N, P dan K dalam bentuk yang tersedia untuk tanaman), logam berat (Mn, Cu, Zn, Cr, Ni, Pb, Cd) dan koliform, dan tahap pH, TOC, C/N ratio yang lebih rendah, Fe, jumlah plat keseluruhan (TPC), Enterobacteriaceae dan Salmonella spp. kiraan berbanding VC dari PTP (VC-P). Semasa proses vermikompos, substrat daripada kedua-dua loji rawatan air sisa (TP) menunjukkan kecenderungan serupa terhadap penurunan pH, TOC, N-NH4+, C/N ratio, TPC, coliforms, E. coli, Enterobacteriaceae dan Salmonella spp. penting, sedangkan arah aliran yang berlawanan telah ditetapkan untuk nilai EC, TKN, N-NO3-, TP, P2O5, TK dan K2O. Pengkomposan mempunyai kesan yang tidak dapat diabaikan pada kepekatan logam berat. Pada substrat akhirE. coli tidak dikesan, sementara bentuk spora bakteria (Clostridium perfringens) tidak dihilangkan. Substrat akhir tidak boleh digunakan sebagai baja atau perubahan tanah kerana adanya Salmonella spp. dan C. perfringens melebihi had yang dibenarkan mengikut peraturan EU dan Bulgaria.

Kata kunci: Lumbricus rubellus; parameter fizikokimia dan mikrobiologi; sisa kumbahan; vermikompos

 

REFERENCES

Aira, M., Gómez-Brandón, M., González-Porto, P. & Domínguez, J. 2011. Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technology 102(20): 9633-9637.

Ayusho, M., Pascual, J.A., Garcia, C. & Hremandez, T. 1996. Evaluation of urban wastes for agricultural use. Soil Science Plant Nutrition 42(1): 105-111.

Azizi, A.B., Lim, M.P.M., Noor, Z.M. & Abdullah, N. 2013. Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicology and Environmental Safety 90: 13-20.

Bartkowska, I., Biedka, P. & Tałałaj, I.A. 2019. Analysis of the quality of stabilized municipal sewage sludge. Journal of Ecological Engineering 20(2): 200-208.

Bajsa, O., Nair, J., Mathew, K. & Ho, G.E. 2005. Processing of sewage sludge through vermicomposting. In Water and Environment Management Series, edited by Mathew K. & Nhapi I. UK: IWA Publishing London.

Boruszko, D. 2016. Determining the effectiveness in vermicomposting of sewage sludge and the attempt to increase the effectiveness by applying bacterial microorganisms. Journal of Ecological Engineering 17(3): 53-59.

Boruszko, D. & Butarewicz, A. 2015. Impact of effective microorganisms bacteria on low-input sewage sludge treatment. Environment Protection Engineering 41(4): 83-96.

Bożym, M. 2016. Vermicomposting of sewage sludge. Chemik 70(10): 616-619.

Braga, F.M., Cardoso, P.H.S., Barbosa, M.H.C., Rodrigues, M.N., Sampaio, R.A. & Fernandes, L.A. 2017. Chemical characterization of vermicompost of sewage sludge with different proportions of diatomaceous material. Revista Brasileira de Engenharia Agrícola e Ambiental 21(8): 519-523.

Castillo, H., Hernández, A., Dominguez, D. & Ojeda, D. 2010. Effect of californian red worm (Eeisenia foetida) on the nutrient dynamics of a mixture of semicomposted materials. Chilean Journal of Agricultural Research 70(3): 465-473.

DG Env. 2009. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land (Final Report). Study Contract. European Commission.

Directive 86/278/EEC. 1986. Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Official Journal of the European Community.

Eastman, B.R., Kane, P.N., Edwards C.A., Trytek, L., Gunadi, B., Sterner, A.L. & Mobley, J.R. 2001. The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Science & Utilization 9(1): 38-49.

Edwards, C.A. & Bohlen, P.J. 1996. Biology and Ecology of Earthworms. Boundary Row, London: Chapman and Hall.

Fanny, S.R., Jorge, M.E., Mario, U.R. & Cruz, M.Q. 2015. Degradation of sewage sludge from plant wastewater using vermicompost. International Journal of Modern Biological Research 4: 1-4.

Garg, P., Gupta, A. & Satya, S. 2006. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresource Technology 97(3): 391-395.

Gerba, C.P. & Smith, J.E. 2005. Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality 34(1): 42-48.

Gómez-Brandón, M. & Domínguez, J. 2014. Recycling of solid organic wastes through vermicomposting: Microbial community changes throughout the process and use of vermicompost as a soil amendment. Critical Reviews in Environmental Science and Technology 44(12): 1289-1312.

Gupta, R. & Garg, V.K. 2008. Stabilization of primary sewage sludge during vermi-composting. Journal of Hazardous Materials 153(3): 1023-1030.

Iwai, C.B., Ta-Oun, M., Chuasavatee, T. & Boonyotha, P. 2013. Management of municipal sewage sludge by vermicomposting technology: Converting a waste into a bio fertilizer for agriculture. International Journal of Environmental and Rural Development 4(1): 169-174.

Haiba, E., Ivask, M., Olle, L., Peda, J., Kuu, A, Kutti, S. & Nei, L. 2014. Transformation of nutrients and organic matter in vermicomposting of sewage sludge and kitchen wastes. Journal of Agricultural Science 6(2): 114-118.

Hait, S. & Tare, V. 2012. Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludge. Ecotoxicology and Environmental Safety 79: 214-224.

Kaviraj & Sharma, S. 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technology 90(2): 169-173.

Khwairakpam, M. & Bhargava, R. 2009. Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials 161(2-3): 948-954.

Kujavska, J. & Wojcik-Oliveira, K. 2019. Effect of vermicomposting on the concentration of heavy metals in soil with drill cuttings. Journal of Ecological Engineering 20(1): 152-157.

Kumaresan, K., Balan, R., Sridhar, A., Aravind, J., Kanmani, P. & Global, J. 2016. An integrated approach of composting methodologies for solid waste management. Global Journal of Environmental Science and Management 2(2): 157-162.

Lalander, C.H., Komakech, A.J. & Vinnerȧs, B. 2015. Vermicomposting as manure management strategy for urban small-holder animal farms - Kampala case study. Waste Management 39: 96-103.

Ludibeth, S.M., Marina, I.E. & Vicenta, E.M. 2012. Vermicomposting of sewage sludge: Earthworm population and agronomic advantages. Compost Science & Utilization 20(1): 11-17.

Malinska, K., Zabochnicka-Swiatek, M., Cáceres, R. & Marfà, O. 2016. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecological Engineering 90: 35-41.

Mushan, L.C., Dama, L.B. & Rao, K.R. 2014. Microbial analysis of tendu leaf litter vermicompost. International Science Journal 1(1): 75-80.

Navarro, I., Jiménez, B., Lucario, S. & Cifuentes, E. 2009. Application of helminth ova infection dose curve to estimate the risks associated with biosolid application on soil. Journal of Water and Health 7(1): 31-44.

Ndegwa, P.M. & Thompson, S.A. 2000. Effect of C-to-N ratio on vermicomposting of biosolids. Bioresource Technology 75(1): 7-12.

NSPSM. 2014. National Strategic Plan for Sludge Management from Municipal Wastewater Treatment Plants on the Territory of the Republic of Bulgaria for the Period 2014-2020. Ministry of Environment and Water. Sofia, Bulgaria. pp. 32-55.

Pathma, J. & Sakthivel, N. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springer Plus 1(1): 1-19.

Pitombo, L.M., Carmo, J.B., Maria, I.C, & Andrade, C.A. 2015. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects. Scientia Agricola 72(2): 147-156. 

Reddy, S.A., Akila, S. & Kale, R.D. 2012. Management of secondary sewage sludge by vermicomposting for use as soil amendment. Global Journal of Biotechnology and Biochemistry 7(1): 13-18.

Regulation. 2017. Regulation on the procedure and method of utilization of sludges from the waste water treatment by their use in agriculture.

Sangwan, P., Kaushik, C.P. & Garg, V.K. 2008. Vermiconversion of industrial sludge for recycling the nutrients. Bioresource Technology 99(18): 8699-8704.

Senesi, N. 1989. Composted materials as organic fertilizers. Science Total Environment 81-82: 521-524.

Sharma, K.S. 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technology 90(2): 169-173.

Sharma, S., Kumar, A., Singh, A.P. & Vasudevan, P. 2009. Earthworms and vermitechnology - A review. Dynamic Soil Dynamic Plant 3(2): 1-12.

Sinha, R.K., Herat, S., Bharambe, G. & Brahambhatt, A. 2010. Vermistabilization of (biosolids) by earthworms: Converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms. Waste Management and Research 28(10): 872-881.

Singh, D. & Bhadauria, S. 2012. Quantitative and qualitative distribution of bacteria in vermicompost produced by different organic wastes. Nature Environment and Pollution Technology 11(2): 331-334.

Singh, A., Singh, R.V., Saxena, A.K., Shivay, Y.S. & Nain, L. 2014. Comparative studies on composting efficiency of Eisenia foetida(SAVIGNY) and Perionyx excavatus(PERRIER). Journal of Experimental Biology and Agricultural Sciences 2(5): 508-517.

Soobhany, N. 2018. Preliminary evaluation of pathogenic bacteria loading on organic municipal solid waste compost and vermicompost. Journal of Environmental Management 206: 763-767.

Soobhany, N., Mohee, R. & Garg, V.K. 2017. A comparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris). Environmental Science and Pollution Research 24(12): 11228-11239.

Soobhany, N., Mohee, R. & Garg, V.K. 2015. Experimental process monitoring and potential of Eudrilus eugeniae in the vermicomposting of organic solid waste in Mauritius. Ecological Engineering 84: 149-158.

Statistical Yearbook (SY). 2019. National Statistical Institute, Sofia, Republic of Bulgaria.

Suthar, S. 2009. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligohaeta). Journal of Hazardous Materials 163(1): 199-206.

Tripathi, G. & Bhardwaj, P. 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida(Savigny) and Lampito mauriti(Kinberg). Bioresource Technology 92(3): 275-283.

 

*Corresponding author; email: gbeev@abv.bg

 

 

 

previous