Sains Malaysiana 50(8)(2021): 2407-2417
http://doi.org/10.17576/jsm-2021-5008-22
Non-Isocyanate Polyurethane (NIPU) Based on Rubber Seed Oil
Synthesized via Low-Pressured Carbonization Reaction
(Poliuretana Bukan Isosianat (NIPU) Berasaskan Minyak Biji Getah yang Disintesis secara Tindak Balas Karboksinasi Bertekanan-Rendah)
R.A. RADEN SITI AMIRAH1, M.A.
FAIZA1* & A. ZULIAHANI2
1School
of Industrial Technology, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor Darul Ehsan, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, 02600 Arau, Perlis Indera Kayangan, Malaysia
Received: 27 April 2020/Accepted:
18 December 2020
abstract
Epoxidised rubber seed oil (ERSO) was successfully synthesized into non-isocyanate
polyurethane via carboxylation method whereas peroxoformic acid was formed by in-situ reaction for epoxidation. The effects of
temperature and ratio of hydrogen peroxide and formic acid to rubber seed oil
carboxylation were studied. The optimum temperature for the epoxidation
reaction was found at 50 °C to avoid ring opening reaction of epoxy whilst the
optimum ratio of hydrogen peroxide and formic acid is equal molar of double
bond: formic acid at 1:2 and 1:1, respectively. At a lower concentration of
hydrogen peroxide and formic acid, the oxirane ring was stable due to the lower
hydrolysis (oxirane cleavage) of an epoxide. The effect of using low content of
formic acid tends to minimize unwanted epoxide ring opening to occur and make
the epoxidation rate increased with increasing of oxirane number. Fourier
transform infrared (FTIR) spectral displayed the presence of an epoxy
functional group at 822 cm-1 and the disappearance of double bond
peak at 3011 cm-1 corresponding to epoxidised oil and carbonyl group confirmed the epoxidation reaction had taken place. 1H-NMR
was used to confirm the formation of carboxylate functionality after the
reaction of epoxy at δ 4.83 and 4.61 ppm. In conclusion, ERSO has great
potential to be used as a precursor in producing environmentally friendly
non-isocyanate polyurethane.
Keywords: Carboxylated oil; epoxidised oil; non-isocyanate; polyurethane; rubberseed oil
ABSTRAK
Minyak
biji getah terepoksi (ERSO) berjaya disintesis menjadi poliuretana bukan
isosianat melalui kaedah karboksilasi sedangkan asid peroksoformik dibentuk
oleh reaksi in-situ untuk epoksidasi. Kesan suhu dan
nisbah hidrogen peroksida dan asid formik kepada karboksilasi minyak biji getah
dikaji. Suhu optimum untuk tindak balas epoksidasi didapati pada suhu 50 °C
untuk mengelakkan tindak balas pembukaan cincin epoksi sementara nisbah optimum
hidrogen peroksida dan asid formik adalah molar ikatan berganda yang sama: asid
formik masing-masing pada kadar 1: 2 dan 1: 1. Pada kepekatan hidrogen
peroksida dan asid formik yang lebih rendah, cincin oksirana stabil kerana
hidrolisis yang rendah (pembelahan oksirana) epoksida. Kesan penggunaan
kandungan asid formik yang rendah cenderung untuk mengurangkan pembukaan cincin
epoksida yang tidak diingini berlaku dan menjadikan kadar epoksidasi meningkat
dengan bertambahnya bilangan oksirana. Spektrum inframerah transformasi Fourier
(FTIR) memperlihatkan kehadiran kumpulan berfungsi epoksi pada jarak 822 cm-1dan hilangnya puncak ikatan berganda
pada 3011 cm-1 yang sepadan dengan minyak terepoksi dan kumpulan
karbonil mengesahkan reaksi epoksidasi telah berlaku. 1H-NMR
digunakan untuk mengesahkan pembentukan fungsi karboksilat setelah tindak balas
epoksi pada δ 4.83 dan 4.61 ppm. Kesimpulannya, ERSO berpotensi besar
untuk digunakan sebagai pendahulu dalam menghasilkan poliuretana bukan
isosianat yang mesra alam.
Kata
kunci: Bukan isosianat; minyak getah; minyak karboksilasi; minyak terepoksi;
poliuretana
REFERENCES
Abdullah, B.M. & Salimon, J.
2010. Epoxidation of vegetable oils and fatty acids: Catalyst, methods and
advantages. Journal of Applied Sciences 10(15): 1545-1553.
ASTM D5554 - 95.
2011. Standard test method for determination of the iodine value of fats and
oils. American Society for Testing and Materials
(ASTM).
Boutin, M., Lesage,
J., Ostiguy, C., Pauluhn, J. & Bertrand, M.J. 2004. Identification of the
isocyanates generated during the thermal degradation of a polyurethane car
paint. Journal of Analytical and Applied Pyrolysis 71(2): 791-802.
Chiniwalla, P.,
Bai, Y., Elce, E., Shick, R., Christopher McDougall, W., Bidstrup Allen, S.A.
& Kohl, P.A. 2003. Crosslinking and decomposition reactions of epoxide
functionalized polynorbornene. Part I. FTIR and thermogravimetric analysis. Journal
of Applied Polymer Science 89(2): 568-577.
Corcuera, M.A.,
Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I.
& Eceiza, A. 2010. Microstructure and properties of polyurethanes derived
from castor oil. Polymer Degradation and Stability 95(11): 2175-2184.
Datta, J. &
Włoch, M. 2016. Progress in non-isocyanate polyurethanes synthesized from
cyclic carbonate intermediates and di- or polyamines in the context of
structure -properties relationship and from an environmental point of view. Polymer
Bulletin 73(5): 1459-1496.
Doll, K.M. &
Erhan, S.Z. 2005a. The improved synthesis of carbonated soybean oil using
supercritical carbon dioxide at a reduced reaction time. Green Chemistry 7(12): 849-854.
Doll, K.M. &
Erhan, S.Z. 2005b. Synthesis of carbonated fatty methyl esters using
supercritical carbon dioxide. Journal of Agricultural and Food Chemistry 53(24): 9608-9614.
Durbetaki, A.J.
1958. Determination of oxirane oxygen in salts of epoxy acids and in the
presence of amines. Analytical Chemistry 30(12): 2024-2025.
Harper, C.A. &
Petrie, E.M. 2003. Plastics Materials and Processes: A Concise Encyclopedia.
Hoboken, New Jersey: John Wiley & Sons, Inc.
Hong, L.K., Yusop,
R.M., Salih, N. & Salimon, J. 2015. Optimization of the in situ epoxidation of linoleic acid of Jatropha curcas oil with performic acid. The Malaysian Journal of Analytical Sciences 19(1): 144-154.
Huang, C.H., Lou,
C.W., Chuang, Y.A., Liu, C.F., Yu, Z.C. & Lin, J.H. 2015. Rigid/flexible
polyurethane foam composite boards with addition of functional fillers:
Acoustics evaluations. Sains Malaysiana 44(12): 1757-1763.
Ikwuagwu, O.E.,
Ononogbu, I.C. & Njoku, O.U. 2000. Production of biodiesel using rubber [Hevea
brasiliensis (Kunth. Muell.)] seed oil. Industrial Crops and Products 12(1): 57-62.
Karateev, A.,
Litvinov, D. & Kalkamanova, O. 2014. “Nonisocyanate” polyhydroxy urethanes
based on the raw material of a plant origin. Chemistry & Chemical
Technology 8(3): 329-338.
Kathalewar, M.,
Sabnis, A. & D’Mello, D. 2014. Isocyanate free polyurethanes from new CNSL
based bis-cyclic carbonate and its application in coatings. European Polymer
Journal 57: 99-108.
Lu, Y. &
Larock, R.C. 2010. Soybean oil-based, aqueous cationic polyurethane
dispersions: Synthesis and properties. Progress in Organic Coatings 69(1): 31-37.
Mohd Soberi, N.S.,
Rahman, R. & Zainuddin, F. 2017. Effect of kenaf fiber on morphology and
mechanical properties of rigid polyurethane foam composite. Materials
Science Forum 888: 188-192.
Raden Siti Amirah,
H., Ahmad Faiza, M. & Samsuri, A. 2013. Synthesis and characterization of
non-isocyanate polyurethane from epoxidized linoleic acid - a preliminary
study. Advanced Materials Research 812: 73-79.
Rosato, D.V. 1993. Rosato’s
Plastics Encyclopedia and Dictionary. Hanser Gardner Publications.
Yadav, S., Zafar,
F., Hasnat, A. & Ahmad, S. 2009. Poly(urethane fatty amide) resin from
linseed oil - a renewable resource. Progress in Organic Coatings 64(1):
27-32.
*Corresponding
author; email: ahmadfaiza@uitm.edu.my
|