Sains Malaysiana 50(8)(2021): 2419-2431
http://doi.org/10.17576/jsm-2021-5008-23
Pemegunan Bahan Radioaktif dalam Enap Cemar Minyak menggunakan Kaca sebagai Kaedah Alternatif
(Solidification of Radioactive Materials in Oil Sludge using Glass as Alternative Method)
NUR
SYUHADA IZZATI RUZALI1, NURSHAHIRAH ALWI1, MOHD IDZAT
IDRIS1,2, SYAZWANI MOHD FADZIL1,2* & ROHYIZA BA’AN3
1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Jabatan Teknologi Sisa dan Persekitaran, Agensi Nuklear Malaysia, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 11 September 2020/Accepted: 15 December 2020
ABSTRAK
Enap cemar minyak dikategorikan sebagai bahan radioaktif peringkat rendah dan pelupusan sisa ini menjadi isu penting dalam pengurusan sisa. Oleh itu, kajian ini bertujuan untuk menguruskan bahan radioaktif tabii (NORM) yang terkandung dalam sisa enap cemar minyak melalui kaedah pengacaan dan mengkaji kadar larut lesap bahan dipegun sebelum dilupuskan. Kajian mendapati bahawa sisa muatan yang optimum bagi bentuk sisa kaca adalah pada julat 20-25% bt. sisa enap cemar dan 75-80% bt. sisa kaca CRT yang dibakar pada suhu 1200°C. Ujian XRD menunjukkan kesemua bentuk sisa kaca adalah kebanyakannya amorfus dan unsur-unsur bertabur dengan sekata melalui analisis FESEM-EDX. Tambahan pula, pembebasan ternormal adalah rendah dan tidak melebihi nilai penunjuk yang dijadikan rujukan. Bentuk sisa kaca yang terhasil dalam kajian ini menunjukkan kaedah pengacaan boleh menjadi alternatif bagi pelupusan sisa enap cemar minyak yang mengandungi bahan radioaktif.
Kata kunci: Bahan radioaktif tabii; enap cemar minyak; kaca CRT; pemegunan sisa
ABSTRACT
Oil sludge is categorized as a
low-level radioactive material and the disposal of waste is a very important
issue in the waste management. Therefore, this study aims to manage naturally
occurring radioactive materials (NORM) that contained in oil sludge through
vitrification process and investigate the chemical durability of CRT glass
before disposal. So, the range of 20-25 wt% of sludge and 75-80 wt% of CRT
at 1200°C were the optimum waste loading. All the glass waste form had mostly
amorphous phase and the elements were evenly distributed through FESEM-EDX
analysis. Furthermore, the chemical durability of CRT was low and below the
standard limit. As conclusion, CRT glass is suitable to use in the
vitrification process for treating the oil sludge before disposal in Malaysia.
Keywords: CRT glass; NORM; oil
sludge; waste solidification
REFERENCES
Amran, A.M., Muhammad, P.A., Abdul, H.S., Kamaruzaman, S. & Mohd, N.Y.
2000. Radioactivity analysis of 226-Ra, 228-Ra and element concentrations in
petroleum sludge samples in Malaysia. The Malaysian Journal of Analytical
Sciences 6: 173-177.
ASTM.
2002. C1285-02 Standard Test Methods for Determining Chemical Durability of
Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The
Product Consistency Test (PCT). West Conshohocken, PA: American Society for
Testing and Materials (ASTM).
Bibler, N.E. &
Jantzen, C.M. 1989. The product consistency test and its role in the waste
acceptance process for DWPF glass. Journal of Waste Management 22(3):
743-749.
Crum,
J.V., Billings, A.L., Lang, J., Marra, J.C.,
Rodriguez, C., Ryan, J.V. & Vienna, J.D. 2009. Baseline Glass
Development for Combined Fission Products Waste Streams. Richland,
Washington D.C.: United States Department of Energy.
Erzat, A. & Zhang, F.S. 2014. Evaluation of lead recovery
efficiency from waste CRT funnel glass by chlorinating volatilization process. Environmental Technology 35(22):
2274-2780.
Fernandes, H.R., Andreola,
F., Barbieri, L., Lancellotti, I., Pascual, M.J. & Ferreira, J.M.F. 2013.
The use of eggshells to produce cathode ray tube (CRT) glass foams. Ceramics International 39(8): 9071-9078.
Gallego, J.L.R., Garcia-Martinez,
M.J., Llamas, J.F., Belloch, C., Pelaez,
A.I. & Sanchez, J. 2007. Biodegradation of oil tank bottom sludge using
microbial consortia. Biodegradation 18(3): 269-281.
Galvao, A.C.P., Farias, A.C.M. & Mendes, J.U.L. 2015.
Characterization of waste of soda-lime glass generated from lapping process to
reuse as filler in composite materials as thermal insulation. Ceramica 61(359): 367-373.
Gignozzi, M.C., Saccani,
A., Barbieri, L. & Lancellotti, I. 2015. Glass waste as supplementary
cementing materials: The effects of glass chemical composition. Cement and
Concrete Composites 55: 45-52.
Hu,
B., Zhao, S. & Zhang, S. 2015. Removal of lead from cathode ray tube funnel
glass by generating the sodium silicate. Journal of the Air & Waste
Management Association 65(1): 106-114.
International
Association of Oil and Gas Producers (IOGP). 2016. Managing Naturally
Occurring Radioactive Material (NORM) in Oil and Gas Industry. Cardiff:
IOGP Publication Library.
Jain, V. 2019. Chemical
Durability of Nuclear Waste Glasses - A Review. Center for Nuclear Waste
Regulatory Analyses, Southwest Research Institute. San Antonio, Texas: United
States Nuclear Regulatory Commission.
https://www.nrc.gov/docs/ML0613/ML061310303.pdf. Diakses pada 6 Jun 2019.
Karaahmet, O. & Cicek, B. 2019. Waste recycling of cathode ray tube glass
through industrial production of transparent ceramic frits. Journal of the
Air and Waste Management Association 69(10): 1258-1266.
Karamberi, A. & Moutsatsou,
A. 2004. Characterization of glass and glass-ceramics obtained from industrial
by-products. In Waste Management and the Environment II, edited by
Popov, V., Itoh, H., Brebbia, C.A. & Kungolos, S. Ashurst, Southampton: WIT Press. m.s. 377-385.
Keshavarzifard, M., Zakaria, M.P., Hwai, T.S., Yusuff, F.M.,
Mustafa, S., Vaezzadeh, V., Magam,
S.M., Masood, N., Alkhadher, S.A.A. & Abootalebi-Jahromi, F. 2014. Baseline distribution and
sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments from
the Prai and Malacca Rivers, Peninsular Malaysia. Marine
Pollution Bulletin 88(1-2): 366-372.
Kim, C.W., Park, J.K. & Hwang,
T.W. 2011. Analysis of leaching behavior of simulated LILW glasses by using the
MCC-1 test method. Journal of Nuclear Science and Technology 48(7):
1108-1114.
Kim, M., Kim, H.G., Kim, S., Yoon,
J.H., Sung, J.Y., Jin, J.S., Lee, M.H., Kim, C.W., Heo, J. & Hong, K.S. 2020. Leaching behaviors and
mechanisms of vitrified forms for the low-level radioactive solid wastes. Journal
of Hazardous Materials 384: 121296.
Liu, X., Yao, T., Lai, R., Xiu, J., Huang, L., Sun, S., Luo, Y., Song, Z. & Zhang,
Z. 2019. Recovery of crude oil from oily sludge in an oilfield by sophorolipid. Petroleum
Science and Technology 37(13):
1582-1588.
Liu,
X., Qiao, Y., Qian, Z. & Ma, H. 2018. Research on
chemical durability of iron phosphate glass wasteforms vitrifying SrF2 and CeF3. Journal of Nuclear Materials 508: 286-291.
Malaysian
Investment Development Authority. 2015. Minyak dan Gas. http://www.mida.gov.my/home/oil-and-gas/posts/?lg=MAL. Diakses pada 7 Mei 2019.
Meor, Y.M.S., Hishamuddin,
H. & Thye, F.C. 2007. Characterization study of
oil sludge and sediment. Journal of Nuclear and Related Technology 4:
25-28.
Mohamad Puad, H.A. & Muhd Noor,
M.Y. 2003. Behaviours of Th-232, U-238, Ra-228 and
Ra-226 on combustion of crude oil terminal sludge. Journal of Environmental
Radioactivity 73(3): 289-305.
Mohd Fadzil, S., Pavel, H.,
Michael, J.S. & Brian, J.R. 2015. Liquidus temperature and chemical
durability of selected glasses to immobilize rare earth oxides waste. Journal of Nuclear Materials 465(3):
657-663.
Mohd Fadzil, S., Sarmani, S., Majid, A.A., Khoo, K.S. & Hamzah, A. 2011. k0-INAA measurement of levels of toxic elements in oil sludge
and their leachability. Journal of Radioanalytical and Nuclear Chemistry 287:
41-47.
Ojovan, M.I. 2008. Viscosity and glass transition in amorphous
oxides. Advances in Condensed Matter
Physics 2008: 817829.
Ojovan, M.I. & Batyukhnova, O.G. 2007. Glasses for nuclear waste
immobilization. 2007 Waste Management Symposium. Tucson, Arizona:
International Atomic Energy Agency. m.s. 1-15.
Ojovan, N.V., Startceva, L.V., Barinov,
A.S., Ojovan, M.I., Bacon, D.H., McGrail, B.P. &
Vienna, J.D. 2004. Product consistency test of fully radioactive high-sodium
content borosilicate glass K-26. Materials Research Society Symposium
Proceedings 824. Cambridge, United Kingdom: Cambridge University
Press. m.s. 1-6.
Omar,
M. 2019. NORM Waste Management in Malaysia. https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/016/31016206.pdf?r=1&r=1. Diakses pada 21 Jun 2019.
Omar,
M., Ali, H.M., Abu, M.P., Kontol, K.M., Ahmad, Z.,
Ahmad, S.H.S.S., Sulaiman, I. & Hamzah, R. 2004.
Distribution of radium in oil and gas industry wastes from Malaysia. Applied
Radiation and Isotopes 60: 779-782.
Peeler,
D., Edwards, T.B., Reamer, I.A., Vienna, J.D., Smith, D.E., Schweiger, M.J.,
Riley, B.J. & Crum, J.V. 2000. Composition/Property Relationships for
the Phase 1 Am/Cm Glass Variability Study. Richland, Washington D.C.:
United States Department of Energy.
Sandgren, E. 2019. Leaching of glass waste - structure and humidity
cell tests. Professional Degree Thesis. Department of Earth Sciences,
Uppsala University (Unpublished).
Suganya, K., Sivapragasam, C., Sharma,
N.K. & Vanitha, S. 2019. Current trends on oil sludge characterization,
toxicity and treatment systems. International
Journal of Recent Technology and Engineering 8(4S2): 13-17.
UKEssays. 2018. The Brief History and Background of Petronas. https://www.ukessays.com/essays/business/the-brief-history-and-background-of-petronas-business-essay.php?vref=1. Diakses pada 11 Ogos 2020.
United
States Department of Agriculture. 2018. Determination of metals by ICP-MS and
ICP-OES.
https://www.fsis.usda.gov/wps/wcm/connect/b9a63ea1-cae9-423b-b200-36a47079ae49/CLG-TM3.pdf?MOD=AJPERES. Diakses pada 13 Ogos 2020.
Yot, P.G. & Mear, F.O.
2011. Characterization of lead, barium and strontium leachability from foam
glasses elaborated using waste cathode ray tube glasses. Journal of
Hazardous Materials 185(1): 236-241.
Youchak-Billings, A.L., Crum, J.V., Marra, J.C., Riley, B.J., Vienna, J.D. & Edmondson, A.
2008. Waste/storage form baseline-fission products & lanthanides. Richland,
Washington D.C.: United States Department of Energy.
Zaidan, J.A.R.
2010. Natural occurring radioactive material (NORM) in the oil and gas
industry. Journal of Petroleum Research & Studies 1(1): 4-21.
Zhang,
C., Wang, J., Bai, J., Guan, J., Wu, W. & Guo, C. 2013. Recovering lead
from cathode ray tube funnel glass by mechano-chemical extraction in alkaline
solution. Waste Management and Research 31(7): 759-763.
*Corresponding
author; email: syazwanimf@ukm.edu.my
|