Sains Malaysiana 50(8)(2021): 2419-2431

http://doi.org/10.17576/jsm-2021-5008-23

 

Pemegunan Bahan Radioaktif dalam Enap Cemar Minyak menggunakan Kaca sebagai Kaedah Alternatif

(Solidification of Radioactive Materials in Oil Sludge using Glass as Alternative Method)

 

NUR SYUHADA IZZATI RUZALI1, NURSHAHIRAH ALWI1, MOHD IDZAT IDRIS1,2, SYAZWANI MOHD FADZIL1,2* & ROHYIZA BA’AN3

 

1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Penyelidikan Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Jabatan Teknologi Sisa dan Persekitaran, Agensi Nuklear Malaysia, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 11 September 2020/Accepted: 15 December 2020

 

ABSTRAK

Enap cemar minyak dikategorikan sebagai bahan radioaktif peringkat rendah dan pelupusan sisa ini menjadi isu penting dalam pengurusan sisa. Oleh itu, kajian ini bertujuan untuk menguruskan bahan radioaktif tabii (NORM) yang terkandung dalam sisa enap cemar minyak melalui kaedah pengacaan dan mengkaji kadar larut lesap bahan dipegun sebelum dilupuskan. Kajian mendapati bahawa sisa muatan yang optimum bagi bentuk sisa kaca adalah pada julat 20-25% bt. sisa enap cemar dan 75-80% bt. sisa kaca CRT yang dibakar pada suhu 1200°C. Ujian XRD menunjukkan kesemua bentuk sisa kaca adalah kebanyakannya amorfus dan unsur-unsur bertabur dengan sekata melalui analisis FESEM-EDX. Tambahan pula, pembebasan ternormal adalah rendah dan tidak melebihi nilai penunjuk yang dijadikan rujukan. Bentuk sisa kaca yang terhasil dalam kajian ini menunjukkan kaedah pengacaan boleh menjadi alternatif bagi pelupusan sisa enap cemar minyak yang mengandungi bahan radioaktif.

Kata kunci: Bahan radioaktif tabii; enap cemar minyak; kaca CRT; pemegunan sisa

 

ABSTRACT

Oil sludge is categorized as a low-level radioactive material and the disposal of waste is a very important issue in the waste management. Therefore, this study aims to manage naturally occurring radioactive materials (NORM) that contained in oil sludge through vitrification process and investigate the chemical durability of CRT glass before disposal. So, the range of 20-25 wt% of sludge and 75-80 wt% of CRT at 1200°C were the optimum waste loading. All the glass waste form had mostly amorphous phase and the elements were evenly distributed through FESEM-EDX analysis. Furthermore, the chemical durability of CRT was low and below the standard limit. As conclusion, CRT glass is suitable to use in the vitrification process for treating the oil sludge before disposal in Malaysia.

Keywords: CRT glass; NORM; oil sludge; waste solidification

 

REFERENCES

Amran, A.M., Muhammad, P.A., Abdul, H.S., Kamaruzaman, S. & Mohd, N.Y. 2000. Radioactivity analysis of 226-Ra, 228-Ra and element concentrations in petroleum sludge samples in Malaysia. The Malaysian Journal of Analytical Sciences 6: 173-177.

ASTM. 2002. C1285-02 Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). West Conshohocken, PA: American Society for Testing and Materials (ASTM).

Bibler, N.E. & Jantzen, C.M. 1989. The product consistency test and its role in the waste acceptance process for DWPF glass. Journal of Waste Management 22(3): 743-749.

Crum, J.V., Billings, A.L., Lang, J., Marra, J.C., Rodriguez, C., Ryan, J.V. & Vienna, J.D. 2009. Baseline Glass Development for Combined Fission Products Waste Streams. Richland, Washington D.C.: United States Department of Energy.

Erzat, A. & Zhang, F.S. 2014. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process. Environmental Technology 35(22): 2274-2780.

Fernandes, H.R., Andreola, F., Barbieri, L., Lancellotti, I., Pascual, M.J. & Ferreira, J.M.F. 2013. The use of eggshells to produce cathode ray tube (CRT) glass foams. Ceramics International 39(8): 9071-9078.

Gallego, J.L.R., Garcia-Martinez, M.J., Llamas, J.F., Belloch, C., Pelaez, A.I. & Sanchez, J. 2007. Biodegradation of oil tank bottom sludge using microbial consortia. Biodegradation 18(3): 269-281.

Galvao, A.C.P., Farias, A.C.M. & Mendes, J.U.L. 2015. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation. Ceramica 61(359): 367-373.

Gignozzi, M.C., Saccani, A., Barbieri, L. & Lancellotti, I. 2015. Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cement and Concrete Composites 55: 45-52.

Hu, B., Zhao, S. & Zhang, S. 2015. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate. Journal of the Air & Waste Management Association 65(1): 106-114.

International Association of Oil and Gas Producers (IOGP). 2016. Managing Naturally Occurring Radioactive Material (NORM) in Oil and Gas Industry. Cardiff: IOGP Publication Library.

Jain, V. 2019. Chemical Durability of Nuclear Waste Glasses - A Review. Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute. San Antonio, Texas: United States Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML0613/ML061310303.pdf. Diakses pada 6 Jun 2019.

Karaahmet, O. & Cicek, B. 2019. Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits. Journal of the Air and Waste Management Association 69(10): 1258-1266.

Karamberi, A. & Moutsatsou, A. 2004. Characterization of glass and glass-ceramics obtained from industrial by-products. In Waste Management and the Environment II, edited by Popov, V., Itoh, H., Brebbia, C.A. & Kungolos, S. Ashurst, Southampton: WIT Press. m.s. 377-385.

Keshavarzifard, M., Zakaria, M.P., Hwai, T.S., Yusuff, F.M., Mustafa, S., Vaezzadeh, V., Magam, S.M., Masood, N., Alkhadher, S.A.A. & Abootalebi-Jahromi, F. 2014. Baseline distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments from the Prai and Malacca Rivers, Peninsular Malaysia. Marine Pollution Bulletin 88(1-2): 366-372.

Kim, C.W., Park, J.K. & Hwang, T.W. 2011. Analysis of leaching behavior of simulated LILW glasses by using the MCC-1 test method. Journal of Nuclear Science and Technology 48(7): 1108-1114.

Kim, M., Kim, H.G., Kim, S., Yoon, J.H., Sung, J.Y., Jin, J.S., Lee, M.H., Kim, C.W., Heo, J. & Hong, K.S. 2020. Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. Journal of Hazardous Materials 384: 121296.

Liu, X., Yao, T., Lai, R., Xiu, J., Huang, L., Sun, S., Luo, Y., Song, Z. & Zhang, Z. 2019. Recovery of crude oil from oily sludge in an oilfield by sophorolipid. Petroleum Science and Technology 37(13): 1582-1588.

Liu, X., Qiao, Y., Qian, Z. & Ma, H. 2018. Research on chemical durability of iron phosphate glass wasteforms vitrifying SrF2 and CeF3. Journal of Nuclear Materials 508: 286-291.

Malaysian Investment Development Authority. 2015. Minyak dan Gas. http://www.mida.gov.my/home/oil-and-gas/posts/?lg=MAL. Diakses pada 7 Mei 2019.

Meor, Y.M.S., Hishamuddin, H. & Thye, F.C. 2007. Characterization study of oil sludge and sediment. Journal of Nuclear and Related Technology 4: 25-28.

Mohamad Puad, H.A. & Muhd Noor, M.Y. 2003. Behaviours of Th-232, U-238, Ra-228 and Ra-226 on combustion of crude oil terminal sludge. Journal of Environmental Radioactivity 73(3): 289-305.

Mohd Fadzil, S., Pavel, H., Michael, J.S. & Brian, J.R. 2015. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste. Journal of Nuclear Materials 465(3): 657-663.

Mohd Fadzil, S., Sarmani, S., Majid, A.A., Khoo, K.S. & Hamzah, A. 2011. k0-INAA measurement of levels of toxic elements in oil sludge and their leachability. Journal of Radioanalytical and Nuclear Chemistry 287: 41-47.

Ojovan, M.I. 2008. Viscosity and glass transition in amorphous oxides. Advances in Condensed Matter Physics 2008: 817829.

Ojovan, M.I. & Batyukhnova, O.G. 2007. Glasses for nuclear waste immobilization. 2007 Waste Management Symposium. Tucson, Arizona: International Atomic Energy Agency. m.s. 1-15.

Ojovan, N.V., Startceva, L.V., Barinov, A.S., Ojovan, M.I., Bacon, D.H., McGrail, B.P. & Vienna, J.D. 2004. Product consistency test of fully radioactive high-sodium content borosilicate glass K-26. Materials Research Society Symposium Proceedings 824. Cambridge, United Kingdom: Cambridge University Press. m.s. 1-6.

Omar, M. 2019. NORM Waste Management in Malaysia. https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/016/31016206.pdf?r=1&r=1. Diakses pada 21 Jun 2019.

Omar, M., Ali, H.M., Abu, M.P., Kontol, K.M., Ahmad, Z., Ahmad, S.H.S.S., Sulaiman, I. & Hamzah, R. 2004. Distribution of radium in oil and gas industry wastes from Malaysia. Applied Radiation and Isotopes 60: 779-782.

Peeler, D., Edwards, T.B., Reamer, I.A., Vienna, J.D., Smith, D.E., Schweiger, M.J., Riley, B.J. & Crum, J.V. 2000. Composition/Property Relationships for the Phase 1 Am/Cm Glass Variability Study. Richland, Washington D.C.: United States Department of Energy.

Sandgren, E. 2019. Leaching of glass waste - structure and humidity cell tests. Professional Degree Thesis. Department of Earth Sciences, Uppsala University (Unpublished).

Suganya, K., Sivapragasam, C., Sharma, N.K. & Vanitha, S. 2019. Current trends on oil sludge characterization, toxicity and treatment systems. International Journal of Recent Technology and Engineering 8(4S2): 13-17.

UKEssays. 2018. The Brief History and Background of Petronas. https://www.ukessays.com/essays/business/the-brief-history-and-background-of-petronas-business-essay.php?vref=1. Diakses pada 11 Ogos 2020.

United States Department of Agriculture. 2018. Determination of metals by ICP-MS and ICP-OES. https://www.fsis.usda.gov/wps/wcm/connect/b9a63ea1-cae9-423b-b200-36a47079ae49/CLG-TM3.pdf?MOD=AJPERES. Diakses pada 13 Ogos 2020.

Yot, P.G. & Mear, F.O. 2011. Characterization of lead, barium and strontium leachability from foam glasses elaborated using waste cathode ray tube glasses. Journal of Hazardous Materials 185(1): 236-241.

Youchak-Billings, A.L., Crum, J.V., Marra, J.C., Riley, B.J., Vienna, J.D. & Edmondson, A. 2008. Waste/storage form baseline-fission products & lanthanides. Richland, Washington D.C.: United States Department of Energy.

Zaidan, J.A.R. 2010. Natural occurring radioactive material (NORM) in the oil and gas industry. Journal of Petroleum Research & Studies 1(1): 4-21.

Zhang, C., Wang, J., Bai, J., Guan, J., Wu, W. & Guo, C. 2013. Recovering lead from cathode ray tube funnel glass by mechano-chemical extraction in alkaline solution. Waste Management and Research 31(7): 759-763.

 

*Corresponding author; email: syazwanimf@ukm.edu.my

 

 

 

             

previous