Sains
Malaysiana 50(8)(2021): 2433-2444
http://doi.org/10.17576/jsm-2021-5008-24
Physical Properties of Newly Developed Resin
Modified Glass Ionomer Cement with Synthesised Coumarin Derivatives
(Sifat
Fizikal Pembentukan Simen Ionomer Kaca Resin Terubahsuai Baharu bersama
Sintesis Terbitan Kumarin)
FATIMAH SUHAILY ABDUL RAHMAN1, DASMAWATI
MOHAMAD1*, HABSAH HASAN2 & HASNAH OSMAN3
1School
of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian,
Kelantan Darul Naim, Malaysia
2School
of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang
Kerian, Kelantan Darul Naim, Malaysia
3School
of Chemical Sciences, Main Campus, Universiti Sains Malaysia, 11800 Pulau
Pinang, Malaysia
Received:
7 September 2020/Accepted: 7 December 2020
ABSTRACT
The aim
of this study was to determine the effects of two types of coumarin
derivatives, namely, 3-acetylcoumarin (AC) and coumarin thiosemicarbazone (CT)
on surface characteristics such as the roughness, hardness, and morphology of
resin-modified glass-ionomer cement (RMGIC). The release of coumarin from the
fabricated RMGIC was also investigated. AC and CT at 1.0% (w/w) concentration
were added into 0.3 g of RMGIC powder and mixed with 0.1 g of polyacrylic acid.
The fabricated RMGIC-AC and RMGIC-CT were evaluated for surface characteristics
such as roughness, hardness and topography. The coumarin release of AC and CT
from RMGIC was also determined. The RMGIC-CT demonstrated a decreased roughness
value among the materials. The surface roughness exhibited by the RMGIC was
statistically higher (p < 0.05) than that of fabricated materials. The
RMGIC-AC was observed to have the highest hardness value compared to the
RMGIC-CT and RMGIC, and this value was significantly higher (p < 0.05). The
surface morphologies of the RMGIC-AC and RMGIC-CT showed a number of pores and
irregular surfaces. Meanwhile, the surface roughness value of the RMGIC was
statistically higher (p < 0.05) than both RMGIC-AC and RMGIC-CT. In
conclusion, the large-sized AC particles significantly increased the surface
hardness of the fabricated RMGIC. Conversely, the particle size of both
coumarins were not influenced the surface roughness value and the coumarin
release profile of fabricated RMGICs.
Keywords:
Coumarin; glass ionomer cement; hardness; microstructure; roughness
ABSTRAK
Tujuan
kajian ini dijalankan adalah untuk mengenal pasti kesan dua jenis terbitan
kumarin, iaitu 3-asetilkumarin (AC) dan kumarin thiosemikarbazon (CT) ke atas
pencirian permukaan simen ionomer kaca resin terubah suai (RMGIC) seperti sifat
kekasaran, kekerasan dan morfologi. Pembebasan kumarin daripada RMGIC difabrik turut dikaji. AC dan CT
dengan kepekatan 1.0% (w/w) ditambah kepada 0.3 g serbuk RMGIC dan kemudiannya
dicampurkan dengan 0.1 g asid poliakrilik. RMGIC-AC dan RMGIC-CT difabrik
dinilai bagi pencirian permukaan seperti kekasaran, kekerasan dan topografi.
Pembebasan kumarin AC dan CT daripada RMGIC juga dinilai. RMGIC-CT menunjukkan
penurunan nilai kekasaran berbanding bahan-bahan yang lain. Kekasaran permukaan
yang ditunjukkan RMGIC adalah tinggi secara statistik (p < 0.05) berbanding
bahan-bahan difabrik. RMGIC-AC menunjukkan nilai kekerasan yang paling tinggi
berbanding RMGIC-CT dan RMGIC, dan ia tinggi secara signifikan (p < 0.05).
Morfologi permukaan pada RMGIC-AC dan RMGIC-CT memperlihatkan beberapa lompang
dan permukaan tidak sekata. Sementara itu, nilai kekasaran pada RMGIC adalah
tinggi secara statistik (p < 0.05) berbanding RMGIC-AC dan RMGIC-CT.
Kesimpulannya, zarah bersaiz besar AC meningkatkan kekerasan secara statistik
pada RMGIC difabrik. Sebaliknya, saiz zarah kedua-dua kumarin tidak
mempengaruhi nilai kekasaran permukaan dan profil pembebasan kumarin pada RMGIC
difabrik.
Kata
kunci: Kekasaran; kekerasan;
kumarin; mikrostruktur; simen ionomer kaca
REFERENCES
Akkus,
A., Karasik, D. & Roperto, R. 2017. Correlation between micro-hardness and
mineral content in healthy human enamel. Journal
of Clinical and Experimental Dentistry 9(4): e569-e573.
Alomayri,
T., Assaedi, H., Shaikh, F.U.A. & Low, I.M. 2014. Effect of water
absorption on the mechanical properties of cotton fabric-reinforced geopolymer
composites. Journal of Asian Ceramic
Societies 2(3): 223-230.
Alyami,
H., Dahmash, E., Bowen, J. & Mohammed, A.R. 2017. An investigation into the
effects of excipient particle size, blending techniques and processing
parameters on the homogeneity and content uniformity of a blend containing
low-dose model drug. PLoS ONE 129(6):
e0178772.
Azlisham,
N.A.F., Mahmood, Z. & Mohamad, D. 2017. Evaluation of surface roughness and
compressive strength of modified glass ionomer cement with coumarin
derivatives. Journal of Mechanical
Engineering 4(2): 216-220.
Azlisham,
N.A.F., Rahman, F.S.A. & Mohamad, D. 2015. Flexural and morphological
properties of newly developed glass ionomer cement (GIC) with the incorporation
of 3-acetylcoumarin. Malaysian Journal of
Microscopy 11(1): 11-15.
Balagopal,
S. & Arjunkumar, R. 2013. Chlorhexidine: The gold standard antiplaque agent. Journal of Pharmaceutical Sciences and
Research 5(12): 270-274.
Beltagy,
T.M. & Elhatery, A.A. 2018. Bioactive resin modified GIC vs. conventional
one in vivo and in vitro study. Egyptian Dental Journal 64(4): 2917-2931.
Berzins,
D.W., Abey, S., Costache, M.C., Wilkie, C.A. & Roberts, H.W. 2010.
Resin-modified glass-ionomer setting reaction competition. Journal of Dental Research 89(1): 82-86.
Chen,
L., Suh, B.I. & Yang, J. 2018. Antibacterial dental restorative materials:
A review. American Journal of Dentistry 31(Sp Is B): 6B-12B.
Da
Silva, C.M., da Silva, D.L., Modolo, L.V., Alves, R.B., de Resende, M.A.,
Martins, C.V. & de Fátima, Â. 2011. Schiff bases: A short review of their
antimicrobial activities. Journal of Advanced Research 2(1): 1-8.
Gharechahi,
M., Moosavi, H. & Forghani, M. 2012. Effect of surface roughness and
materials composition. Journal of
Biomaterials and Nanobiotechnology 3(04): 541-546.
Gilman,
J.J. 2009. Chemistry and Physics of Mechanical Hardness. Hoboken, New
Jersey: John Wiley & Sons, Inc.
Hiraishi,
N., Yiu, C.K.Y., King, N.M., Tay, F.R. & Pashley, D.H. 2008. Chlorhexidine
release and water sorption characteristics of chlorhexidine-incorporated
hydrophobic/hydrophilic resins. Dental
Materials 24(10): 1391-1399.
Hu,
Y., Shen, Y., Wu, X., Tu, X. & Wang, G.X. 2018. Synthesis and biological
evaluation of coumarin derivatives containing imidazole skeleton as potential
antibacterial agents. European Journal of
Medicinal Chemistry 143: 958-969.
Kaushik,
M., Sharma, R., Reddy, P., Pathak, P., Udameshi, P. & Vallakuruchi Jayabal,
N. 2014. Comparative evaluation of voids present in conventional and capsulated
glass ionomer cements using two different conditioners: An in vitro study. International Journal of
Biomaterials 2014: 935240.
Kuhn,
A.T. & Wilson, A.D. 1985. The dissolution mechanisms of silicate and
glass-ionomer dental cements. Biomaterials 6(6): 378-382.
Kundie,
F., Azhari, C.H., Muchtar, A. & Ahmad, Z.A. 2018. Effects of filler size on
the mechanical properties of polymer-filled dental composites: A review of
recent developments. Journal of Physical
Science 29(1): 141-165.
Mount,
G.J., Patel, C. & Makinson, O.F. 2002. Resin modified glass‐ionomers:
Strength, cure depth and translucency. Australian
Dental Journal 47(4): 339-343.
Najeeb,
S., Khurshid, Z., Zafar, M.S., Khan, A.S., Zohaib, S., Martí, J.M.N., Sauro,
S., Matinlinna, J.P. & Rehman, I.U. 2016. Modifications in glass ionomer
cements: Nano-sized fillers and bioactive nanoceramics. International Journal of Molecular Sciences 17(7): 1134.
Nomoto,
R., Komoriyama, M., McCabe, J.F. & Hirano, S. 2004. Effect of mixing method
on the porosity of encapsulated glass ionomer cement. Dental Materials 20(10): 972-978.
Özdemir,
H. & Özdoğan, A. 2018. The effect of heat treatments applied to superstructure
porcelain on the mechanical properties and microstructure of lithium disilicate
glass ceramics. Dental Materials Journal 37(1): 24-32.
Pinto-Sinai,
G., Brewster, J. & Roberts, H. 2018. Linear coefficient of thermal
expansion evaluation of glass ionomer and resin-modified glass ionomer
restorative materials. Operative
Dentistry 43(5): E266-E272.
Puttaraju,
K.B., Shivashankar, K., Mahendra, M., Rasal, V.P., Vivek, P.N.V., Rai, K. &
Chanu, M.B. 2013. Microwave assisted synthesis of dihydrobenzo [4, 5] imidazo
[1, 2-a] pyrimidin-4-ones; synthesis, in vitro antimicrobial and
anticancer activities of novel coumarin substituted dihydrobenzo [4, 5] imidazo
[1, 2-a] pyrimidin-4-ones. European
Journal of Medicinal Chemistry 69: 316-322.
Rahman,
F.S.A., Yusufzai, S.K., Osman, H. & Mohamad, D. 2016. Synthesis,
characterisation and cytotoxicity activity of thiazole substitution of coumarin
derivatives (Characterisation of coumarin derivatives). Journal of Physical Science 27(1): 77-87.
Rashid,
H. 2014. The effect of surface roughness on ceramics used in dentistry: A
review of literature. European Journal of
Dentistry 8(4): 571-579.
Rohini,
K. & Srikumar, P.S. 2014. Therapeutic role of coumarins and
coumarin-related compounds. Journal of Thermodynamics & Catalysis 5(2): 1-3.
Salem,
M.A., Marzouk, M.I. & El-Kazak, A.M. 2016. Synthesis and characterization
of some new coumarins with in vitro antitumor and antioxidant activity
and high protective effects against DNA damage. Molecules 21(2): 249.
Sanders,
B.J., Gregory, R.L., Moore, K. & Avery, D.R. 2002. Antibacterial and
physical properties of resin modified glass‐ionomers combined with
chlorhexidine. Journal of Oral Rehabilitation 29(6): 553-558.
Savabi,
O., Nejatidanesh, F., Fathi, M.H., Navabi, A.A. & Savabi, G. 2013.
Evaluation of hardness and wear resistance of interim restorative materials. Dental Research Journal 10(2): 184-188.
Sidhu,
S.K. 2011. Glass‐ionomer cement restorative materials: A sticky subject? Australian Dental Journal 56(Suppl 1):
23-30.
Siegel,
R.A. & Rathbone, M.J. 2012. Overview of controlled release mechanisms. In Fundamentals and Applications of Controlled
Release Drug Delivery, edited by Siepmann, J., Siegel, R.A. & Rathbone, M.J. Switzerland: Springer Science
& Business Media.
Souza,
J.C., Silva, J.B., Aladim, A., Carvalho, O., Nascimento, R.M., Silva, F.S.,
Martinelli, A.E. & Henriques, B. 2016. Effect of zirconia and alumina
fillers on the microstructure and mechanical strength of dental glass ionomer
cements. The Open Dentistry Journal 10: 58.
Stefanachi,
A., Leonetti, F., Pisani, L., Catto, M. & Carotti, A. 2018. Coumarin: A
natural, privileged and versatile scaffold for bioactive compounds. Molecules 23(2): 250.
Thomas,
S., Chan, C.H., Pthen, L.A., Joy, J. & Maria, H.J. 2014. Natural Rubber Materials - Volume 2:
Composites and Nanocomposites. Milton Road, Cambridge: The Royal Society of
Chemistry.
Türkün,
L.S.E., Türkün, M., Ertuĝrul, F., Ates, M. & Brugger, S. 2008.
Long‐term antibacterial effects and physical properties of a
chlorhexidine‐containing glass ionomer cement. Journal of Esthetic and
Restorative Dentistry 20(1): 29-44.
Tüzüner,
T. & Ulusu, T. 2012. Effect of antibacterial agents on the surface hardness
of a conventional glass-ionomer cement. Journal
of Applied Oral Science 20(1): 45-49.
Venugopala,
K.N., Rashmi, V. & Odhav, B. 2013. Review on natural coumarin lead
compounds for their pharmacological activity. BioMed Research International 2013: 1-14.
Yamazaki,
Y., Naganuma, J. & Gotoh, H. 2019. A theoretical, dynamical evaluation
method of the steric hindrance in nitroxide radicals using transition states of
model reactions. Scientific Reports 9(1): 1-11.
Zafar,
M.S. 2014. A comparison of dental restorative materials and mineralized dental
tissues for surface nanomechanical properties. Life Science Journal 11(10s): 19-24.
*Corresponding
author; email: dasmawati@usm.my
|