Sains Malaysiana 50(8)(2021): 2433-2444

http://doi.org/10.17576/jsm-2021-5008-24

 

Physical Properties of Newly Developed Resin Modified Glass Ionomer Cement with Synthesised Coumarin Derivatives

(Sifat Fizikal Pembentukan Simen Ionomer Kaca Resin Terubahsuai Baharu bersama Sintesis Terbitan Kumarin)

 

FATIMAH SUHAILY ABDUL RAHMAN1, DASMAWATI MOHAMAD1*, HABSAH HASAN2 & HASNAH OSMAN3

 

1School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

2School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

3School of Chemical Sciences, Main Campus, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

Received: 7 September 2020/Accepted: 7 December 2020

 

ABSTRACT

The aim of this study was to determine the effects of two types of coumarin derivatives, namely, 3-acetylcoumarin (AC) and coumarin thiosemicarbazone (CT) on surface characteristics such as the roughness, hardness, and morphology of resin-modified glass-ionomer cement (RMGIC). The release of coumarin from the fabricated RMGIC was also investigated. AC and CT at 1.0% (w/w) concentration were added into 0.3 g of RMGIC powder and mixed with 0.1 g of polyacrylic acid. The fabricated RMGIC-AC and RMGIC-CT were evaluated for surface characteristics such as roughness, hardness and topography. The coumarin release of AC and CT from RMGIC was also determined. The RMGIC-CT demonstrated a decreased roughness value among the materials. The surface roughness exhibited by the RMGIC was statistically higher (p < 0.05) than that of fabricated materials. The RMGIC-AC was observed to have the highest hardness value compared to the RMGIC-CT and RMGIC, and this value was significantly higher (p < 0.05). The surface morphologies of the RMGIC-AC and RMGIC-CT showed a number of pores and irregular surfaces. Meanwhile, the surface roughness value of the RMGIC was statistically higher (p < 0.05) than both RMGIC-AC and RMGIC-CT. In conclusion, the large-sized AC particles significantly increased the surface hardness of the fabricated RMGIC. Conversely, the particle size of both coumarins were not influenced the surface roughness value and the coumarin release profile of fabricated RMGICs. 

Keywords: Coumarin; glass ionomer cement; hardness; microstructure; roughness

 

ABSTRAK

Tujuan kajian ini dijalankan adalah untuk mengenal pasti kesan dua jenis terbitan kumarin, iaitu 3-asetilkumarin (AC) dan kumarin thiosemikarbazon (CT) ke atas pencirian permukaan simen ionomer kaca resin terubah suai (RMGIC) seperti sifat kekasaran, kekerasan dan morfologi.  Pembebasan kumarin daripada RMGIC difabrik turut dikaji. AC dan CT dengan kepekatan 1.0% (w/w) ditambah kepada 0.3 g serbuk RMGIC dan kemudiannya dicampurkan dengan 0.1 g asid poliakrilik. RMGIC-AC dan RMGIC-CT difabrik dinilai bagi pencirian permukaan seperti kekasaran, kekerasan dan topografi. Pembebasan kumarin AC dan CT daripada RMGIC juga dinilai. RMGIC-CT menunjukkan penurunan nilai kekasaran berbanding bahan-bahan yang lain. Kekasaran permukaan yang ditunjukkan RMGIC adalah tinggi secara statistik (p < 0.05) berbanding bahan-bahan difabrik. RMGIC-AC menunjukkan nilai kekerasan yang paling tinggi berbanding RMGIC-CT dan RMGIC, dan ia tinggi secara signifikan (p < 0.05). Morfologi permukaan pada RMGIC-AC dan RMGIC-CT memperlihatkan beberapa lompang dan permukaan tidak sekata. Sementara itu, nilai kekasaran pada RMGIC adalah tinggi secara statistik (p < 0.05) berbanding RMGIC-AC dan RMGIC-CT. Kesimpulannya, zarah bersaiz besar AC meningkatkan kekerasan secara statistik pada RMGIC difabrik. Sebaliknya, saiz zarah kedua-dua kumarin tidak mempengaruhi nilai kekasaran permukaan dan profil pembebasan kumarin pada RMGIC difabrik.

Kata kunci: Kekasaran; kekerasan; kumarin; mikrostruktur; simen ionomer kaca

 

REFERENCES

Akkus, A., Karasik, D. & Roperto, R. 2017. Correlation between micro-hardness and mineral content in healthy human enamel. Journal of Clinical and Experimental Dentistry 9(4): e569-e573.

Alomayri, T., Assaedi, H., Shaikh, F.U.A. & Low, I.M. 2014. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies 2(3): 223-230.

Alyami, H., Dahmash, E., Bowen, J. & Mohammed, A.R. 2017. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. PLoS ONE 129(6): e0178772.

Azlisham, N.A.F., Mahmood, Z. & Mohamad, D. 2017. Evaluation of surface roughness and compressive strength of modified glass ionomer cement with coumarin derivatives. Journal of Mechanical Engineering 4(2): 216-220.

Azlisham, N.A.F., Rahman, F.S.A. & Mohamad, D. 2015. Flexural and morphological properties of newly developed glass ionomer cement (GIC) with the incorporation of 3-acetylcoumarin. Malaysian Journal of Microscopy 11(1): 11-15.

Balagopal, S. & Arjunkumar, R. 2013. Chlorhexidine: The gold standard antiplaque agent. Journal of Pharmaceutical Sciences and Research 5(12): 270-274.

Beltagy, T.M. & Elhatery, A.A. 2018. Bioactive resin modified GIC vs. conventional one in vivo and in vitro study. Egyptian Dental Journal 64(4): 2917-2931.

Berzins, D.W., Abey, S., Costache, M.C., Wilkie, C.A. & Roberts, H.W. 2010. Resin-modified glass-ionomer setting reaction competition. Journal of Dental Research 89(1): 82-86.

Chen, L., Suh, B.I. & Yang, J. 2018. Antibacterial dental restorative materials: A review. American Journal of Dentistry 31(Sp Is B): 6B-12B.

Da Silva, C.M., da Silva, D.L., Modolo, L.V., Alves, R.B., de Resende, M.A., Martins, C.V. & de Fátima, Â. 2011. Schiff bases: A short review of their antimicrobial activities. Journal of Advanced Research 2(1): 1-8.

Gharechahi, M., Moosavi, H. & Forghani, M. 2012. Effect of surface roughness and materials composition. Journal of Biomaterials and Nanobiotechnology 3(04): 541-546.

Gilman, J.J. 2009. Chemistry and Physics of Mechanical Hardness. Hoboken, New Jersey: John Wiley & Sons, Inc.

Hiraishi, N., Yiu, C.K.Y., King, N.M., Tay, F.R. & Pashley, D.H. 2008. Chlorhexidine release and water sorption characteristics of chlorhexidine-incorporated hydrophobic/hydrophilic resins. Dental Materials 24(10): 1391-1399.

Hu, Y., Shen, Y., Wu, X., Tu, X. & Wang, G.X. 2018. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry 143: 958-969.

Kaushik, M., Sharma, R., Reddy, P., Pathak, P., Udameshi, P. & Vallakuruchi Jayabal, N. 2014. Comparative evaluation of voids present in conventional and capsulated glass ionomer cements using two different conditioners: An in vitro study. International Journal of Biomaterials 2014: 935240.

Kuhn, A.T. & Wilson, A.D. 1985. The dissolution mechanisms of silicate and glass-ionomer dental cements. Biomaterials 6(6): 378-382.

Kundie, F., Azhari, C.H., Muchtar, A. & Ahmad, Z.A. 2018. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. Journal of Physical Science 29(1): 141-165.

Mount, G.J., Patel, C. & Makinson, O.F. 2002. Resin modified glass‐ionomers: Strength, cure depth and translucency. Australian Dental Journal 47(4): 339-343.

Najeeb, S., Khurshid, Z., Zafar, M.S., Khan, A.S., Zohaib, S., Martí, J.M.N., Sauro, S., Matinlinna, J.P. & Rehman, I.U. 2016. Modifications in glass ionomer cements: Nano-sized fillers and bioactive nanoceramics. International Journal of Molecular Sciences 17(7): 1134.

Nomoto, R., Komoriyama, M., McCabe, J.F. & Hirano, S. 2004. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dental Materials 20(10): 972-978.

Özdemir, H. & Özdoğan, A. 2018. The effect of heat treatments applied to superstructure porcelain on the mechanical properties and microstructure of lithium disilicate glass ceramics. Dental Materials Journal 37(1): 24-32.

Pinto-Sinai, G., Brewster, J. & Roberts, H. 2018. Linear coefficient of thermal expansion evaluation of glass ionomer and resin-modified glass ionomer restorative materials. Operative Dentistry 43(5): E266-E272.

Puttaraju, K.B., Shivashankar, K., Mahendra, M., Rasal, V.P., Vivek, P.N.V., Rai, K. & Chanu, M.B. 2013. Microwave assisted synthesis of dihydrobenzo [4, 5] imidazo [1, 2-a] pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo [4, 5] imidazo [1, 2-a] pyrimidin-4-ones. European Journal of Medicinal Chemistry 69: 316-322.

Rahman, F.S.A., Yusufzai, S.K., Osman, H. & Mohamad, D. 2016. Synthesis, characterisation and cytotoxicity activity of thiazole substitution of coumarin derivatives (Characterisation of coumarin derivatives). Journal of Physical Science 27(1): 77-87.

Rashid, H. 2014. The effect of surface roughness on ceramics used in dentistry: A review of literature. European Journal of Dentistry 8(4): 571-579.

Rohini, K. & Srikumar, P.S. 2014. Therapeutic role of coumarins and coumarin-related compounds. Journal of Thermodynamics & Catalysis 5(2): 1-3.

Salem, M.A., Marzouk, M.I. & El-Kazak, A.M. 2016. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules 21(2): 249.

Sanders, B.J., Gregory, R.L., Moore, K. & Avery, D.R. 2002. Antibacterial and physical properties of resin modified glass‐ionomers combined with chlorhexidine. Journal of Oral Rehabilitation 29(6): 553-558.

Savabi, O., Nejatidanesh, F., Fathi, M.H., Navabi, A.A. & Savabi, G. 2013. Evaluation of hardness and wear resistance of interim restorative materials. Dental Research Journal 10(2): 184-188.

Sidhu, S.K. 2011. Glass‐ionomer cement restorative materials: A sticky subject? Australian Dental Journal 56(Suppl 1): 23-30.

Siegel, R.A. & Rathbone, M.J. 2012. Overview of controlled release mechanisms. In Fundamentals and Applications of Controlled Release Drug Delivery, edited by Siepmann, J., Siegel, R.A. & Rathbone, M.J. Switzerland: Springer Science & Business Media.

Souza, J.C., Silva, J.B., Aladim, A., Carvalho, O., Nascimento, R.M., Silva, F.S., Martinelli, A.E. & Henriques, B. 2016. Effect of zirconia and alumina fillers on the microstructure and mechanical strength of dental glass ionomer cements. The Open Dentistry Journal 10: 58.

Stefanachi, A., Leonetti, F., Pisani, L., Catto, M. & Carotti, A. 2018. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 23(2): 250.

Thomas, S., Chan, C.H., Pthen, L.A., Joy, J. & Maria, H.J. 2014. Natural Rubber Materials - Volume 2: Composites and Nanocomposites. Milton Road, Cambridge: The Royal Society of Chemistry.

Türkün, L.S.E., Türkün, M., Ertuĝrul, F., Ates, M. & Brugger, S. 2008. Long‐term antibacterial effects and physical properties of a chlorhexidine‐containing glass ionomer cement. Journal of Esthetic and Restorative Dentistry 20(1): 29-44.

Tüzüner, T. & Ulusu, T. 2012. Effect of antibacterial agents on the surface hardness of a conventional glass-ionomer cement. Journal of Applied Oral Science 20(1): 45-49.

Venugopala, K.N., Rashmi, V. & Odhav, B. 2013. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International 2013: 1-14.

Yamazaki, Y., Naganuma, J. & Gotoh, H. 2019. A theoretical, dynamical evaluation method of the steric hindrance in nitroxide radicals using transition states of model reactions. Scientific Reports 9(1): 1-11.

Zafar, M.S. 2014. A comparison of dental restorative materials and mineralized dental tissues for surface nanomechanical properties. Life Science Journal 11(10s): 19-24.

 

*Corresponding author; email: dasmawati@usm.my

 

   

             

previous